MIRAGE: Mitigating Cache Attacks with a
Randomized Fully-Associative Cache

<

Published in USENIX Security.2021-¢ -~

Gururaj Saileshwar

NVIDIA Research / University of _ -
Toronto =
& = 7 - ’. -

Moinuddin Qureshi
Georgia Tech

Problem: CPU Cache Side-Channels

|- 4

SPY
PROCESS

@,

Cache
Side-Channels

Last Level Cache (LLC)

Problem: CPU Cache Side-Channels

SPY VICTIM
PROCESS PROCESS

Last Level Cache (LLC)

Shared
Cache Set

Set
Conflict

Ways

Problem: CPU Cache Side-Channels

aﬁ

VICTIM
PROCESS

|- 4

SPY

PROCESS Last Level Cache (LLC)

Prime+Probe Attack

[Bernstein’05],[Perceival’05],
[Liu+, SP’15]

Problem: CPU Cache Side-Channels

aﬁ

VICTIM
PROCESS

|- 4

SPY
PROCESS

Last Level Cache (LLC)

s

. Secret-Dependent
Prime+Probe Attack ecret-pepenaen

[Bernstein’05],[Perceival’05],
[Liu+, SP’15]

Problem: CPU Cache Side-Channels

|- 4

oﬁ

VICTIM
PROCESS

SPY

PROCESS Last Level Cache (LLC)

s

Secret-Dependent
Slow Access for B 2>

Victim Accessed “V”

Spy Observing Victim’s Accesses Can Infer Sensitive Data
(e.g. AES Keys?, Fingerprint Websites in Browsers?, ML Model Architecture3)

1 - [Bernstein’05], 2 - [Shusterman+, SEC’20], 3 - [Yan+, SEC’20], [Hong+, ICLR’20] 5

Key Requirement for Attack: Set Conflicts

SPY
PROCESS

VICTIM
Last Level Cache (LLC) PROCESS

Eviction Set
Set Conflict

Prior Defense: Partitioning and Randomization

Partitioned Cache Defense

[MICRO’18], [MICRO’19]

Insulate Cache Usage of Different Processes

Limited Scalability or
Practicality

Randomized Cache Defenses
[MICRO’18], [ISCA’19], [SEC’19], [NDSS’20], [S&P’21]

v

Address —®—>

Sets

Randomized Mapping Obfuscates Set-Conflicts

Practical To Adopt,
But Successive Defenses Broken

Can We Design Principled Randomization?

Arms Race Between Attacks & Defenses

Intel LLC CEASER CEASER-S, Scatter-Cache
Proprietary Mapping [MICRO’18] [ISCA’19] [SEC’19]
N lines in LLC Randomized Dynamic - _Sliews

. Vapping
o Bl -

Line

Remapping
Line __@/(

Install (X) == Install (X) Install (X) -. |
-J-“ |
I / I / |
m Pitfall: Set-Conflicts Continue at Few Obfuscated Locations
v/ v/ v
E?/:c;li(s:-g\ét O(N2) Accesses O(N) Accesses Fast Probabilistic Evictions
[SP’15] [ISCA’19], [SP'19] [SP’21]

Discovery in

Goal: Need to Eliminate Set-Associative Evictions (Set-Conflicts)

Our Solution MIRAGE: A Fully-Associative Randomized LLC

Abstraction to SW: Fully-Associative Challenge: Fully-Associative Lookup
Randomized Cache Requires Checking 100,000+ LLC Locations
Line Random Eviction Line Can Map to Any
Install From Entire Cache Install Cache Location
L I x| — |[a][s][c],
mirage | — 1 T/ =77 =="
LLC

@ Principled Security Impractical Lookup Latency & Power

Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021. 9

Our Solution MIRAGE: A Fully-Associative Randomized LLC

Abstraction to SW: Fully-Associative
Randomized Cache

Set-Associative

Cache
Line Random Eviction Line
Install From Entire Cache Install
=
L . ‘ X]=> LAJLBILC iy
Mirage A
LLC

@ Principled Security @ Practical Lookup within Set

(16-32 Locations)

Key Challenge: How to get Security of Fully-Associative Design with Set-Associative Lookups?

Insight: Use Load-Balancing to Eliminate Set-Conflicts

Buckets & Balls Problem Set-Associative
Buckets Randomized Cache
C ity =
(Sets) apacity = w e Ways (w)

- 000& Install

X | =
@ — Bucket Overflow == ===

Sets

—» Eviction

Random 0000

(Set-Associative
Eviction or SAE)

Balls
(Cache Lines)

11

Insight: Use Load-Balancing to Eliminate Set-Conflicts

16 Balls in 4 Buckets (C=4) | 16 Balls in 4 Buckets (C=8)
Buckets | _
(Sets) C=4 C=8
Q00000 O®® - Bucket Overflow
e 0000 ot (Set-Associative Eviction)

Random " 0000 iRandom o 0000
s./' s./ —> Global Eviction

Balls
(Cache Lines)

40000 50000

‘..q 8C ...‘

Bucket Overflow Every Bucket Overflow Reduced,
Ball Throw But Still Possible

Insight: Use Load-Balancing to Eliminate Set-Conflicts

16 Balls in 4 Buckets (C=4)

Buckets

(Sets) C=4

7 0000

Random 0000
4C
Qo—
O
Balls
(Cache Lines)

o 0000

cooq

Bucket Overflow Every
Ball Throw

16 Balls in 4 Buckets (C=8)

C=8

7 00000000

ERandom S OO0
B | %
O

0 000

sc [I J

Bucket Overflow Reduced,
But Still Possible

16 Balls in 4 Buckets (C=8)

& Power of 2 Choices
[Mitzenmacher’96] C=8

7 00000

iRandOm/ 8C .‘..

&
g

0 0000

Lower Load

scl L 1

Bucket Overflow Improbable:
Balanced Distribution

Insight: Use Load-Balancing to Eliminate Set-Conflicts

16 Balls in 4 Buckets (C=4) | 16 Balls in 4 Buckets (C=8) 16 Balls in 4 Buckets (C=8)
| | & Power of 2 Choices
Buckets o ! [Mitzenmacher’96] _
(Sets) ~ C=4 | C=8 CTS
. 000e | 1 00000000 | 00000 ;.
| / Oyerflgw
Random 5 0000 ERa.ndom " 000 iRando.m. 2C 0000 va
o & 5 ® |
| | Global
Balls > 0000 5 000 g 9000 Eviction
(Cache Lines) | , Lowerload
‘..q o 00 | o 000

Bucket Overflow Every Bucket Overflow Reduced, Bucket Overflow Improbable:
Ball Throw But Still Possible Balanced Distribution

Security Guarantee With Power of 2 Choices

Balls Needed for
Bucket Overflow

1035
1030
1025
1020
1015
1010

10°

100

Frequency of Bucket Overflows

’

= ® = Theoretical Model / V\
. lati | /
% Simulation Results 7 With 75% extra capacity,
/ 1034 Ball Throws Needed
,/ for Bucket Overflow
7’
7’
’,X
R
1 2 3 4 5 6

Extra Capacity Per Bucket (Default-Capacity = 8)

15

Security Guarantee With Power of 2 Choices

Set-Associative Eviction (SAE)

Frequency of Bucket-Overflows
1035 ’
1030 = ® = Theoretical Model / v\
LLC Installs . : /
25 * Simulation Results 7/ : ;
Before SAE 10 7 With 75% extra capacity,
ded f 1020 / 1034 Ball Throws Needed
BW 1015 ,/ for Bucket Overflow
Bucket Over " R
10 o
10° -
100 L Sl
0 1 2 3 4 5 6
Extra Capacity PerBucket (Default-Capacity = 8)

Set

LLC with 75% extra capacity & Power of 2 Choices Indexing 2>

Security Guarantee: 1 SAE in 1034 LLC Installs (1017 years)

Implementing MIRAGE’s Principled Randomization

Extra Tags Cheap, Extra Data Expensive (1:10)

Data-Store
Tag-Store
One to One
4] < =
(o))
(Vs
75%
Ways extra

Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021. 17

Implementing MIRAGE’s Principled Randomization

MIRAGE (Decouples Tag and Data)

Data-Store

Line Install Tag-Store -
In Invalid Tag - _ Global Random Eviction

Data|RPTR K

Sets

75%
extra

Ways

Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021. 18

Implementing MIRAGE’s Principled Randomization

Power-of-2-Choices

Indexing
Data-Store

Tag-Store -
Skew-0 — Global Random Eviction

Data|RPTR K

Line Install
In Invalid Tag

N i

L1010

Skew-1

Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021. 19

Implementing MIRAGE’s Principled Randomization

Power-of-2-Choices

Indexing
Data-Store

Tag-Store -
Skew-0 _ Global Random Eviction

Line Install N {
In Invalid Tag D /M |

Data|RPTR K

Skew-1

‘ =

Saileshwar and Qureshi. MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design. In USENIX Security 2021. 20

Implementing MIRAGE’s Principled Randomization

Power-of-2-Choices

Indexing
Data-Store

Tag-Store -
Skew-0 _ Global Random Eviction

Line Install

> +
In Invalid Tag 2 Invalid D il |
] e

‘ =

Guarantees %
Invalid Tags
& Global Evictions 3 Invalid

Skew-1

Security Guarantee: With 75% extra tags (~20% extra storage),

MIRAGE ensures Set-Associative Eviction (that leaks info) occurs once in 10!/ years

Note: MIRAGE also mitigates shared-memory attacks (like Flush+Reload) with duplication of shared-lines 21

Results — Performance

8-Cores, 16 MB 16-way Last Level Cache, evaluated using a Trace-Based Simulator (using Intel Pin)

) m Scatter-Cache ® MIRAGE 119% Scatter-Cache
110%
= 1.7% slowdown
S Mean
£ 105% [Werner+, SEC’19]
O
| -
L 100%
b MIRAGE
N %
= 2% slowdown
: ull
o 90% I [Saileshwar+, SEC’21]
Z QQ‘} (’0 (' :_, \ ’b\\ e:’){o (({7 (:" ((\ \\Q/ (\'\' \,o {\

& N ° \(}) R Q ‘(‘ & ((\\

oQ Q}\‘OQ’ & +’b Q& c?’ AR & %o ° Q ‘oo K © ,\g, %Qzé%er \a

MIRAGE incurs slowdown of 2% (Storage-Neutral Slowdown of 3.5%)

comparable to Scatter-Cache that got broken

Performance Validation with FireSim

« Challenge: FireSim (as of 2020) only models the tag-store and not data-store for the
last-level cache - Timing model stalled till data functionally accessed from host DRAM

« Cannot model global evictions in Mirage without the data-store & RPTR to tag-store

- Still useful for performance validation: implemented randomized cache with 2 skews
& increased access latency (randomized evictions & access latency like MIRAGE)

4 x Rocket-Cores, 4MB /16-way L3 Cache)

Workload || Base Randomized cache with increased lookup latency
+3 cycles | +4 cycles | +5 cycles +6 cycles
perlbench 191 202 194 206 203
mcf 191 199 194 200 201
omnetpp 42 42 41 42 42
x264 699 707 702 696 707
deepsjeng 85 84 84 84 84
leela 44 44 45 45 45
exchange2 || 109 110 108 108 109
XZ 119 114 114 115 115
MEAN 100% | 100.6% 99.5% 100.9% 101.0%

Randomized Cache with 3 - 6 cycles extra access latency = limited slowdown of <1%

Pitfalls of Inaccurate Modeling of Mirage

Case Study of the HPCA’23 Paper “Are Randomized Caches Truly Random”

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random?
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23.

MIRAGE Design

Tag-Store | | Globally
Line ST 1010000 Data-Store || Random
Install DD |:||] I | Eviction
OO0 reTR |_T
> - 1 i
? O0O000 J % \ Bug-1: Data-Store and RPTR
—< 000000 1] Invalidation not modeled
skew-1 (L1OOOO|FPTR

> main.py
262144 16384 229376
valid eviction

assert(Valid Tags <= Cache Capacity). Valid Tags : 295339, Cache Capacity : 262144

valid eviction
assert(Valid Tags <= Cache Capacity). Valid Tags : 301414, Cache Capacity : 262144

valid eviction

24

Pitfalls of Inaccurate Modeling of Mirage
Case Study of the HPCA’23 Paper “Are Randomized Caches Truly Random”

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random?
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23.

Count of Sets (out of 32000)

103 4

101 -

MIRAGE Design

Tag-Store

. Skew-0
Line

Install

Data-Store

OO00O0reTR

Skew-1 L0000

o
ﬂ I]I]I]DEI!

_Jt

FPTR

IHIN

. Globally
Random
Eviction

ot

\ Bug-1: Data-Store and RPTR
Invalidation not modeled

__ Bug-2: Buggy Initialization of Tags

Set-Occupancy in Tag-Store at Initialization

Original Buggy Initialization

01 2 3 4 5 6 7 8 9 101112 1314
Number of Valid Tags Per Set

(P,qig =0.5) = Starts with Full Sets

25

Pitfalls of Inaccurate Modeling of Mirage
Case Study of the HPCA’23 Paper “Are Randomized Caches Truly Random”

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random?
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23.

Count of Sets (out of 32000)

=

o
W
1

=

o
-
1

MIRAGE Design

. Skew-0
Line

Install

&
>

Skew-1

Tag-Store

_____ . Globally
Data-Store I Random
Eviction
] I
OO000reTR |_T
- —1]
00000 J % \ Bug-1: Data-Store and RPTR
L Invalidation not modeled
00000 FPTR e
L __ Bug-2: Buggy Initialization of Tags

Set-Occupancy in Tag-Store at Initialization

Original Buggy Initialization

01 2 3 4 5 6 7 8 9 101112 1314
Number of Valid Tags Per Set

10

10

Count of Sets (out of 320¢(

103 5

102 5

(P,qig =0.5) = Starts with Full Sets

Bugfix: Initialize Tag-Store with N Random Accesses

4]

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Valid Tags Per Set 26

Pitfalls of Inaccurate Modeling of Mirage
Case Study of the HPCA’23 Paper “Are Randomized Caches Truly Random”

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random?
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23.

Line
Install

L.

MIRAGE Design

Skew-0

Bug-3: Buggy Cipher Implementation
Caused Non-Uniform Randomization

Original Buggy PRESENT

>
’,,//”///‘%:L

Skew-1

Tag-Store

Data-Store

OO00O0reTR

LI CICICIC
Hiu|nnn

_Jt

FPTR

IHIN

. Globally
Random
Eviction

ot

\ Bug-1: Data-Store and RPTR
Invalidation not modeled

__ Bug-2: Buggy Initialization of Tags

Distribution of Set-Indices for 1 Million Addresses

Cipher

Count (out of 1 million)
» H N
o u o
(@] (@] o

(9]
o
1

o
1

(0] 5000 10000 15000

Indices (sorted)

(P,qig =0.5) = Starts with Full Sets

27

Pitfalls of Inaccurate Modeling of Mirage
Case Study of the HPCA’23 Paper “Are Randomized Caches Truly Random”

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random?
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23.

Line
Install

L.

MIRAGE Design

Skew-0

/—?;"

Bug-3: Buggy Cipher Implementation
Caused Non-Uniform Randomization

Original Buggy PRESENT

Skew-1

et Globally
1010000 Data-Store |, Random
DDDD] I Eviction
OO0 reTR |_T
l_ . —1 _-.
O000ogd, J :1: \ Bug-1: Data-Store and RPTR
OO00] L Invalidation not modeled
FPTR
== __ Bug-2: Buggy Initialization of Tags

Distribution of Set-Indices for 1 Million Addresses

Cipher

200 -

150 1

100 ~

5
o
1

Count (out of 1 million)

o
1

N
o
o

[
Ul
o

Count (out of 1 million)
(=)
o
(@]

(0] 5000 10000 15000

Indices (sorted)

Bugfix: Standard AES Cipher

9]
o
1

o
1

[0} 5000 10000
Indices (sorted)

15000

Count (out of 1 million)

200 -

150 A

100 A

(P,qig =0.5) = Starts with Full Sets

Bugfix: PRINCE Cipher

0
o
I

o
L

0 5000 10000 15000 28
Indices (sorted)

Pitfalls of Inaccurate Modeling of Mirage
Case Study of the HPCA’23 Paper “Are Randomized Caches Truly Random”

Claim: MIRAGE has set-conflicts within 100K cache accesses & is broken.

A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “Are Randomized Caches Truly Random?
Formal Analysis of Randomized-Partitioned Caches”. Published In HPCA’23.

MIRAGE Design

Tag-Store Globally

Line Data-Store I Random
Install I Eviction
L, ot

\ Bug-1: Data-Store and RPTR
Invalidation not modeled

-

Bug-3: Buggy Cipher Implementation __ Bug-2: Buggy Initialization of Tags
Caused Non-Uniform Randomization (Pyqiig =0.5) = Starts with Full Sets

0
Fisiy
0L

After Fixing Bugs in Authors’ Simulator, No Set-Conflicts observed in MIRAGE (as expected)

More details: https://github.com/gururaj-s/refuting HPCA23 randCache 29

https://github.com/gururaj-s/refuting_HPCA23_randCache

Takeways from MIRAGE

Line Any Random Line
Install From Entire Cache
L Mirage J
LLC Eviction

Code: https://github.com/gururaj-s/mirage

Principled Randomized Cache = Future-Proof Security

MIRAGE enables fully-associative evictions (leaking no address information) practically

Impact: MIRAGE Promises an End to the Arms Race
Between 2018 - 2020, 5 defenses were broken by 6 attacks. MIRAGE has been unbroken since 2020

30

https://github.com/gururaj-s/mirage

