Developing and Evaluating the nanoPU
and nanoSort using Chipyard and
Firesim

Stephen Ibanez, Theo Jepsen, Alex Mallery, Serhat

Arslan, *Muhammad Shahbaz, Changhoon Kim,
Gregory Valiant, Nick McKeown

Stanford University, *Purdue University

What is the nanoPU? (OSDI 21)

Data center applications are highly distributed and
increasingly fine grained.

Question:

What would it take to absolutely minimize median and
tail communication latency?

h e nanoPU Modified RISC-V

Rocket Core

/e N\
Programmable NIC
>
. o
HW Core . g
‘ &
i =
. , \

DMA Path
Key Features:

* Integrated NIC

* Efficient core selection in HW

* Programmable transport in HW
* Direct path to CPU register file
* Hardware-accelerated thread scheduling

Wire-to-wire latency: 69ns
\ Sin \

gle-core throughput: 118Mrps

The nanoPU Core

Core

HW Thread Sched.

>
(D
Q
I_l.
2
t
(D
- Il
0)]

nanoPU Prototype

* Quad-core nanoPU based on RISC-V Rocket core (using Chipyard)
* 4,300 lines of Chisel code & 1,200 lines of C and RISC-V assembly for

custom nanokernel
* Implements NDP and Homa transport

* Cycle-accurate simulations (3.2GHz) on AWS FPGAs using Firesim

Programmable 200Gb/s NIC

Ethernet
MAC +
Serial

I0

HW NDP Transport

HW JBSQ
Core Sel.

PISA
Pipeline

Packet

=

Message

Global
RX/TXQs

1t

A

__________________________________ RISC-V CPU
Rocket Cores 0 to 3

O cad cd

@)

(Q\]

Local @) —
—
RX/TXQs |

\ 4

Main Memory

Evaluation Method #1 — Python & Verilator

Simulations

Linux TAP
Interface

Python Unit Testing
Framework

Simulated
nanoPU

A

VERILATOR

* Hook up Chipyard Verilator simulations to Linux TAP interface

* Leverage powerful Python libraries
e Scapy — constructing, transmitting, receiving, parsing network pkts
* Pandas, NumPy — stats collection and numerical analysis

e Used for:

* Unit testing nanoPU apps
e Simple latency & throughput microbenchmarks

Evaluation Method #2 — Firesim Load Generator

fl.2xlarge

VU9P FPGA
Host CPU Simulated S
— Net X Firesim Infra
Load Generator Shmfes

Link — Simulated nanoPU

* Firesim load generator
* A modified Firesim switch model
* Cycle accurate, running on Host CPU
* Generates requests at configurable load, measures end-to-end response time

* Firesim enables us to simulate >10K requests in a couple minutes

nanoPU Applications

* MICA Key-Value Store:

—— Traditional nanoPU (naive) nanoPU (optimized)

I

Load (Mrps)

[
o

o

99% Resp. Time (us)
un

592ns

* Raft Consensus, Chain Replication, Set Algebra, and more!

Evaluation Method #3 — Network Simulations

i, W

T

N~ nanoPU server

80 nanoPU clients

Network Workload Evaluations

. Buffer Size = 108KB Buffer Size = 54KB
v —— NDP
* Understand performance 3" — Hom
characteristics of HW 5™ |
transport protocols §"
L 20+
* Run at much largerscale 3.,/ "\ 1 " TRANL
than is possible in grad 0 ey U Y timews
student lab Buffer Size = 108KB Buffer Size = 54KB
12.5- Im NDP
* NanoTransport SOSR 21, m—HOMA

Slow Downs

20 22 24 26 28 30 32 34 36 38 20 22 24 26 28 30 32 34 36 38
Msg Size (Pkts) Msg Size (Pkts) 0

https://web.stanford.edu/~sarslan/files/NanoTransport--A_Low-Latency_Programmable_Transport_Layer_for_NICs.pdf

Firesim & HW Transport Protocol Verification

* Many CSPs are exploring and deploying custom transport protocols
offloaded to NIC HW

* These protocols are often complex with many tricky edge cases

* Firesim provides an opportunity to:

* Validate correct protocol implementation ...
Evaluate performance of the protocol ...
Using real applications ..

@ large scale ...
Before silicon tape out
Save a lot of time, money, and headaches

nanoSort

Low-latency, massively parallel sort algorithm using 16,384 cores in FireSim

12

What?
Sort large datasets as quickly as possible.

Why?
Sort is essential for apps with latency deadlines.

How?

New algorithm that leverages low-latency nanoPU
communication stack.

GraySort Benchmark

@ Sort Benchmark Home Page X +

&« C {} @& sortbenchmarkorg = * ¥ 0O

Sort Benchmark Home Page

New: We are happy to announce the 2021 winners listed below. The new, 2021 records are listed in green. Congratulations to the winners!

Background

Until 2007, the sort benchmarks were primary defined, sponsored and administered by Jim Gray. Following Jim's disappearance at sea in January 2007, the sort
benchmarks have been continued by a committee of past colleagues and sort benchmark winners. The Sort Benchmark committee members include:

» Chris Nyberg of Ordinal Technology Corp
* Mehul Shah of Amazon Web Services
+ George Porter of UC 5an Diego Computer Science & Engineering Dept

Top Results

Daytona

Indy

2016, 44.8 TB/min

Tencent Sort
100 TB in 134 Seconds
512 nodes x (2 OpenPOWER 10-core POWERS 2.926 GHz,
512 GB memory, 4x Huawei ES3600P V3 1.2TB NVMe 55D,
100GE Mellanox ConnectX4-EN)
Jie Jiang, Lixiong Zheng, Junfeng Pu,
Xiong Cheng, Chongging Zhao
Tencent Corporation
Mark R. Nutter, Jeremy D. Schaub

Gray

2016, 60.7 TB/min

Tencent Sort
100 TE in 98.8 Seconds
512 nodes x (2 OpenPOWER 10-core POWERS 2.926 GHz,
512 GB memory, 4x Huawei ES3600P V3 1.2TB NVMe 55D,
100Gk Mellanox Connect¥4-EN)
Jie Jiang, Lixiong Zheng, Junfeng Pu,
Xiong Cheng, Chongging Zhao
Tencent Corporation
Mark R. Nutter, Jeremy D. Schaub

2016, 51.44 / TB

NADSort
100 TB for 5144
394 Alibaba Cloud ECS ecs.ni.large nodes x
(Haswell E5-2680 v3, 8 GB memory,
Cloud 40GB Ultra Cloud Disk, 4x 135GE 550 Cloud Disk)
Qian Wang, Rong Gu, Yihua Huang
MNanjing University
Reynold Xin
Databricks Inc.
Wei Wu, Jun Song, Junluan Xia
Alibaba Group Inc.

2016, 51.44 / TB

NADSort
100 TB for 5144
394 Alibaba Cloud ECS ecs.ni.large nodes x
(Haswell E5-2680 v3, 8 GB memory,
40GB Ultra Cloud Disk, 4x 135GB 550 Cloud Disk)
Qian Wang, Rong Gu, Yihua Huang
Nanjing University
Reynold Xin
Databricks Inc.
Wei Wu, Jun Song, Junluan Xia
Alibaba Group Inc.

2016, 37 TB

Tencent Sort

2016, 55 TB
Tencent Sort

14

Single Core Isn’t Fast Enough

10,000
g 5.000
()]
£
= 1.000
g -
®) 500
0p)

100

10 100

Number of keys

1000

16

The nanoSort Algorithm

ooooooooooooooooo

000000

Shuffle initial keys among all nodes

Pick 16 “splitter” keys to delimit buckets
Partition nodes into 16 buckets

Send keys to nodes in each bucket

Al S

Recurse in each bucket

000000

A
o_ 49//// //// ///

nanoSort Implementation

nanoSort.c

* nanoSort implemented as a nanoPU C program

 Runs on cluster simulated with FireSim
e Uses 264 AWS EC2 instances (4,224 vCPUs)

O FireSim
o

dWS

19

Network Topology

* Full bisection leaf-spine topo with 400G links
* Receiver-driven NDP transport protocol
* In-network support for reliable multicast

64 spine switches

256 leaf switches

16,834 nanoPUs
(x 4 = 65,536 cores)

nanoPU

Changes to FireSim

e Support for large scale Verilator simulations
* Instead of expensive F1 instances, use cheaper c4 instances
* Not worth FPGA flashing overhead for fast simulations

O
* Added reliable multicast to software switch o—ﬁo
* Switch caches packets in order to handle retransmissions

* Changed queueing in software switch — IO~
* Prioritize data over ACK packets [O_’_.

VERILATOR

000

nanoSort Evaluation on FireSim

nanoSort scales

100,000

NanoSort time (n

75,000
50,000

25,000

50k 100k 150k 200k 250k
Number of keys

nanoSort needs a fast network

150,000
£ 100,000
Q
£
£ 50,000
=]
o

0 500 1000 1500 2000

Idle time
(@)

I

S~ o~

500 1000 1500 2000 Most time
spent on
More time spent Switch latency (ns) communication

on compute 22

Backup Slides

The Need to Minimize RPC Latency and
Software Overheads

Fine-grained Computing
 Video encoding (ExCamera

\)

Large Online Interactive Services

cket

ATC’19)

and tail latency as well as software processing s (Locus

overheads?

24

he nanoPU Fast Path

Programmable NIC

HW Core Sel. [€

FEthernet MAC +

HW Transport g Global RXQSE
PISA | |
tngress Reassembly E I II I E
=v=¥ 111110 <
(T MSgS' !
o T e P |
- Message Buffer . . j
_g { Global TXQs |
G e Packetization E E
& | - (I |
| | mimin ; ggi@ I II I :
]]
Message Buffer E I " I . RX/TXQs
]
]
[}

e JEEED

The nanoPU Core

Core

HW

Thread Sched.

26

The nanoPU Core

P=0 P=1
RX Queues

Core

Thread Sched.

27

Microbenchmarks

Programmable NIC

RISC-V CPU

Rocket Cores 0 to 3

Y

Main Memory

HW JBSQ HW Priority Thread Sched.
Core [Sel.
— 5 Ethernet ?DU] O
Q N
MAC + PISA Global |, Local a4 - -
Serial Pipeline RX/TXQs | RX/TXQs ot =
<« D
10 ~ [
[0))]
I 26ns I 5.3ns F 2.2ns 3.1ns App reads a message
(__I 26ns 1 4.6ns I 0.9ns 0.9ns App writes a message

...

. Wire-to-Wire Latency = 69ns

Wire-to-Wire Single Core Loopback

Latency (ns) Throughput (Mrps)
nanoPU 69 118
lceNIC 103 16
eRPC 850 10

28

Evaluation Method #3 — Network Simulations

74 packet bottleneck queue

N~ nanoPU server

80 nanoPU clients

29

