
Developing and Evaluating the nanoPU
and nanoSort using Chipyard and 

Firesim

Stephen Ibanez, Theo Jepsen, Alex Mallery, Serhat 
Arslan, *Muhammad Shahbaz, Changhoon Kim, 

Gregory Valiant, Nick McKeown
Stanford University, *Purdue University

1



What is the nanoPU? (OSDI ‘21)

2

Question:
What would it take to absolutely minimize median and 

tail communication latency?

Data center applications are highly distributed and
increasingly fine grained.



The nanoPU

3

d

Programmable NIC

Key Features:
• Integrated NIC
• Efficient core selection in HW
• Programmable transport in HW
• Direct path to CPU register file
• Hardware-accelerated thread scheduling

L
L
C

M
a
i
n
 
M
e
m
o
r
yCore 0

Core N-1

DMA Path

HW

Transport

Core

Selection

Wire-to-wire latency: 69ns
Single-core throughput: 118Mrps

Modified RISC-V 
Rocket Core



The nanoPU Core

4

HW Thread Sched.

netRX

netTX

R
e
g
i
s
t
e
r
s

L1 I$

Core

L1 D$

RX Queue

TX Queue

MV



nanoPU Prototype
• Quad-core nanoPU based on RISC-V Rocket core (using Chipyard)

• 4,300 lines of Chisel code & 1,200 lines of C and RISC-V assembly for 
custom nanokernel

• Implements NDP and Homa transport

• Cycle-accurate simulations (3.2GHz) on AWS FPGAs using Firesim

5

Programmable 200Gb/s NIC

Ethernet

MAC +

Serial 

IO

Rocket Cores 0 to 3

HW Priority Thread Sched.

netRX

netTX

R
e
g
i
s
t
e
r
s

Local 

RX/TXQs L
1
C

M
a
i
n
 
M
e
m
o
r
y

RISC-V CPU

L
2
C

App reads a message

App writes a message

26ns 5.3ns 2.2ns 3.1ns

0.9ns0.9ns0.6ns26ns

PISA

Pipeline

Packet

Message

Global 

RX/TXQs

HW NDP Transport

Loopback Latency = 13ns

Wire-to-Wire Latency = 65ns

HW JBSQ

Core Sel.



Evaluation Method #1 – Python & Verilator
Simulations 

• Hook up Chipyard Verilator simulations to Linux TAP interface

• Leverage powerful Python libraries
• Scapy – constructing, transmitting, receiving, parsing network pkts
• Pandas, NumPy – stats collection and numerical analysis

• Used for:
• Unit testing nanoPU apps
• Simple latency & throughput microbenchmarks 6



Evaluation Method #2 – Firesim Load Generator 

• Firesim load generator
• A modified Firesim switch model

• Cycle accurate, running on Host CPU

• Generates requests at configurable load, measures end-to-end response time

• Firesim enables us to simulate >10K requests in a couple minutes
7



nanoPU Applications

• MICA Key-Value Store:

8

592ns

• Raft Consensus, Chain Replication, Set Algebra, and more!



Evaluation Method #3 – Network Simulations 

9

...

80 nanoPU clients

nanoPU server

3µs RTT



Network Workload Evaluations

10

• Understand performance 
characteristics of HW 
transport protocols

• Run at much larger scale
than is possible in grad
student lab

• NanoTransport SOSR ‘21

https://web.stanford.edu/~sarslan/files/NanoTransport--A_Low-Latency_Programmable_Transport_Layer_for_NICs.pdf


Firesim & HW Transport Protocol Verification

• Many CSPs are exploring and deploying custom transport protocols
offloaded to NIC HW

• These protocols are often complex with many tricky edge cases

• Firesim provides an opportunity to:
• Validate correct protocol implementation …

• Evaluate performance of the protocol …

• Using real applications ..

• @ large scale …

• Before silicon tape out

• Save a lot of time, money, and headaches

11



nanoSort
Low-latency, massively parallel sort algorithm using 16,384 cores in FireSim

12



What?
Sort large datasets as quickly as possible.

Why?
Sort is essential for apps with latency deadlines.

How?
New algorithm that leverages low-latency nanoPU
communication stack.

13



GraySort Benchmark

14



Single Core Isn’t Fast Enough

16



The nanoSort Algorithm

1. Shuffle initial keys among all nodes

2. Pick 16 “splitter” keys to delimit buckets

3. Partition nodes into 16 buckets

4. Send keys to nodes in each bucket

5. Recurse in each bucket 

18



nanoSort Implementation

• nanoSort implemented as a nanoPU C program

• Runs on cluster simulated with FireSim

• Uses 264 AWS EC2 instances (4,224 vCPUs)

19

nanoSort.c



Network Topology

• Full bisection leaf-spine topo with 400G links

• Receiver-driven NDP transport protocol

• In-network support for reliable multicast

20

nanoPU …

…

…
64 spine switches

256 leaf switches

16,834 nanoPUs
(× 4 = 65,536 cores)



Changes to FireSim

• Support for large scale Verilator simulations
• Instead of expensive F1 instances, use cheaper c4 instances

• Not worth FPGA flashing overhead for fast simulations

• Added reliable multicast to software switch
• Switch caches packets in order to handle retransmissions

• Changed queueing in software switch
• Prioritize data over ACK packets

21



nanoSort Evaluation on FireSim

22

nanoSort scales nanoSort needs a fast network

More time spent 
on compute

Most time 
spent on 

communication



Backup Slides

23



The Need to Minimize RPC Latency and 
Software Overheads
Large Online Interactive Services

• Web Search

• Recommendation systems

• Online transaction processing

24

Fine-grained Computing
• Video encoding (ExCamera

NSDI’17)

• Object classification (Sprocket 
SoCC’18)

• Software compilation (gg ATC’19)

• MapReduce-style analytics (Locus 
NSDI’19)

• Flash Bursts (NSDI ‘21)

... ... ...

...

Question:
What would it take to absolutely minimize RPC median 

and tail latency as well as software processing 
overheads?



The nanoPU Fast Path

25

d

PISA

Ingress

Egress

E
t
h
e
r
n
e
t
 
M
A
C
 
+
 

S
e
r
i
a
l
 
I
O

Programmable NIC Core 0

HW Thread Sched.

netRX

netTX
RX/TXQs

R
e
g
i
s
t
e
r
s

Reassembly

Message Buffer

HW Transport

Packetization

Message Buffer

Pkts

Msgs

Core N-1

HW Thread Sched.

netRX

netTX
RX/TXQs

R
e
g
i
s
t
e
r
s

HW Core Sel.

Global RXQs

Global TXQs



The nanoPU Core

26

HW Thread Sched.

netRX

netTX

R
e
g
i
s
t
e
r
s

L1 I$

Core

L1 D$

RX Queue

TX Queue

MV
Swap



The nanoPU Core

27

HW Thread Sched.

netRX

netTX

R
e
g
i
s
t
e
r
s

L1 I$

Core

L1 D$

RX Queues

TX Queues

MV

P=1P=0



Microbenchmarks

28

Wire-to-Wire
Latency (ns)

Single Core Loopback
Throughput (Mrps)

nanoPU 69 118

IceNIC 103 16

eRPC 850 10

Programmable NIC

Ethernet

MAC +

Serial 

IO

Rocket Cores 0 to 3

HW Priority Thread Sched.

netRX

netTX

R
e
g
i
s
t
e
r
s

Local 

RX/TXQs L
1
C

M
a
i
n
 
M
e
m
o
r
y

RISC-V CPU

L
2
C

App reads a message

App writes a message

26ns 5.3ns 2.2ns 3.1ns

0.9ns0.9ns4.6ns26ns

PISA

Pipeline

Packet

Message

Global 

RX/TXQs

HW NDP Transport

Loopback Latency = 17ns

Wire-to-Wire Latency = 69ns

HW JBSQ

Core Sel.

Ethernet MAC

S
p
l
i
t
t
e
r

A
r
b
i
t
e
r

D
e
c
r
y
p
t

E
n
c
r
y
p
t

PISA Pipeline

T
r
a
n
s
p
o
r
t

Core0

C
o
n
t
e
x
t

Pkt Out

Msg Out

Pkt In

Msg In

T
h
r
e
a
d

S
c
h
e
d
u
l
e
r

N
I
C
 
P
a
c
k
e
t

D
a
t
a
p
a
t
h

N
I
C
 
M
e
s
s
a
g
e

D
a
t
a
p
a
t
h

E
t
h
e
r
n
e
t
 
M
A
C

Splitter

Arbiter

Encrypt

Decrypt

M
A
U
 
P
i
p
e
l
i
n
e

Transport

Ethernet MAC
S
p
l
i
t
t
e
r A

r
b
i
t
e
r

E
n
c
r
y
p
t

D
e
c
r
y
p
t

MAU PipelineT
r
a
n
s
p
o
r
t

CPU

head

tail

R
e
g
i
s
t
e
r
s

FIFOs

Ethernet MAC

S
p
l
i
t
t
e
r A

r
b
i
t
e
r

E
n
c
r
y
p
t

D
e
c
r
y
p
t

MAU PipelineT
r
a
n
s
p
o
r
t

CPU

head

tail

R
e
g
i
s
t
e
r
s

FIFOs

Ethernet MAC

S
p
l
i
t
t
e
r A

r
b
i
t
e
r

E
n
c
r
y
p
t

D
e
c
r
y
p
t

MAU PipelineT
r
a
n
s
p
o
r
t

CPU

head

tail
R
e
g
i
s
t
e
r
s

FIFOs

C
P
U
0

C
P
U
1

C
P
U
2

E
t
h
e
r
n
e
t
 
M
A
C

Splitter

Arbiter

Encrypt

Decrypt

M
A
U
 
P
i
p
e
l
i
n
e

Transport

C
P
U h
e
a
d

t
a
i
l

Registers

F
I
F
O
s

Control

P
k
t
 
O
u
t

M
s
g
O
u
t

P
k
t
 
I
n

M
s
g
 
I
n

Thread

Scheduler

NIC

Datapath

NIC-Core

Interface

E
t
h
e
r
n
e
t
 
M
A
C

Splitter

Arbiter

Encrypt

Decrypt

M
A
U
 
P
i
p
e
l
i
n
e

Transport

Ethernet MAC

S
p
l
i
t
t
e
r A

r
b
i
t
e
r

E
n
c
r
y
p
t

D
e
c
r
y
p
t

MAU PipelineT
r
a
n
s
p
o
r
t

CPU

head

tail

R
e
g
i
s
t
e
r
s

FIFOs

Ethernet MAC

S
p
l
i
t
t
e
r A

r
b
i
t
e
r

E
n
c
r
y
p
t

D
e
c
r
y
p
t

MAU PipelineT
r
a
n
s
p
o
r
t

CPU

head

tail

R
e
g
i
s
t
e
r
s

FIFOs

Ethernet MAC

S
p
l
i
t
t
e
r A

r
b
i
t
e
r

E
n
c
r
y
p
t

D
e
c
r
y
p
t

MAU PipelineT
r
a
n
s
p
o
r
t

CPU

head

tail

R
e
g
i
s
t
e
r
s

FIFOs

C
P
U
0

C
P
U
1

C
P
U
2

E
t
h
e
r
n
e
t
 
M
A
C

Splitter

Arbiter

Encrypt

Decrypt

M
A
U
 
P
i
p
e
l
i
n
e

Transport

Ethernet MAC

S
p
l
i
t
t
e
r A

r
b
i
t
e
r

E
n
c
r
y
p
t

D
e
c
r
y
p
t

MAU PipelineT
r
a
n
s
p
o
r
t

CPU

head

tail

R
e
g
i
s
t
e
r
s

FIFOs

Ethernet MAC
S
p
l
i
t
t
e
r A

r
b
i
t
e
r

E
n
c
r
y
p
t

D
e
c
r
y
p
t

MAU PipelineT
r
a
n
s
p
o
r
t

CPU

head

tail

R
e
g
i
s
t
e
r
s

FIFOs

Ethernet MAC

S
p
l
i
t
t
e
r A

r
b
i
t
e
r

E
n
c
r
y
p
t

D
e
c
r
y
p
t

MAU PipelineT
r
a
n
s
p
o
r
t

CPU

head

tail

R
e
g
i
s
t
e
r
s

FIFOs

C
P
U
0

C
P
U
1

C
P
U
2

Core1 Core2

C
P
U
s
 
w
i
t
h

N
a
n
o
k
e
r
n
e
l
 
&

N
a
n
o
t
a
s
k
s

C
o
n
t
e
x
t
 
F
I
F
O
s

(
a
)

(
b
)

(
c
)

(
d
)

C
o
n
t
e
x
t

C
S
R
s

L
-
N
I
C

CSRs

Figure2: Our nanoPU prototype latency breakdown. Total wire-to-wire latency for an 8B message (72B packet) is69ns.

temporary storage. Fortunately, gcc makes it easy to reserve

registers via command-line options [48].

The core also required changes to the control logic that

handles pipeline flushes. A pipeline flush can occur for a

number of reasons (e.g., a branch misprediction). On a tradi-

tional five-stage RISC-V Rocket core, architectural state is

not modified until an instruction reaches the write-back stage

(Rocket Stage 5). However, with the addition of our network

register file interface, reading net RXnow causes a state mod-

ification (FIFO read) in the decode stage (Rocket Stage 2).

Thedestructive read operation must beundone when there is

apipeline flush. The CPU pipeline depth isan upper bound

on how many read operations need to be undone; in our case,

at most two reads require undoing. It is straightforward to

implement aFIFO queue supporting this operation.

3.2 Bounded Thread Scheduling in Hardware

The nanoPU core implements thread scheduling in hardware,

asdescribed in Section 2.2. The number of threads that can

run on each core is primarily determined by the amount of

buffering available for the local RX/TX queues. In order to

implement the JBSQ(2) core selection policy, as described

in Section 2.3, the local RX queue for each thread must be

able to hold at least two maximum size messages. Weuse a

maximum message size of 2KB (two packets)6 and allocate

16KB of buffer for the local RX queues. Therefore, the pro-

totypesupports up to four threads on each core; each thread

can beconfigured with a unique priority value. Priority 0 has

aconfigurablemaximum message processing time in order to

implement the bounded priority thread scheduling policy. We

added a new thread-scheduling interrupt to the RISC-V core,

along with an accompanying control & status register (CSR)

set by HTS to tell the interrupt’s trap handler which thread it

should run next. When processing nanoRequests, we disable

all other interrupts to avoid unnecessary interrupt handling

6The maximum message size is aconfigurable parameter of the architec-

ture and we haveexperimented with messages as long as 38 packets.

overheads.

Wedefine the context-switch latency to be the time from

when the scheduler fires the interrupt to when the first in-

struction of the target thread is executed. Our prototype has a

measured context-switch latency of 160 cycles, or 50ns on a

3.2GHz CPU. This is much faster than a typical Linux con-

text switch, partly because the thread scheduling decision is

offloaded to hardware, and partly because the core only runs

bare-metal applications in the same address space with the

highest privilege mode. Therefore, nanoPU hardware thread

scheduling in a Linux environment would be less efficient

than our bare-metal prototype.

3.3 Prototype NIC Pipeline

The NIC portion of the nanoPU fast path consists of the pro-

grammable transport module and thecore selection module.

Our prototype implements both.

Transport hardware. We configured our programmable

transport moduleto implement NDP[24] entirely in hardware.

Wechose NDP because it has promising low-latency perfor-

mance, and is well-suited to handle small RPC messages (the

class of messages we are most interested in accelerating, i.e.,

nanoRequests). However, the nanoPU does not depend on

NDP. As explained in Section 2.3, our NIC transport layer

is programmable. It has already been shown to support sev-

eral other protocols, including Homa [42]. We evaluate our

hardware NDP implementation in Section 5.2.3.

JBSQ hardware. As explained in Section 2.3, our NIC im-

plementsJBSQ(2) [36] to load balance messages across cores

on a per-application basis. JBSQ(2) is implemented using

two tables. Thefirst maps themessage’sdestination layer-4

port number to aper-core bitmap, indicating whether or not

each core is running a thread bound to the port number. The

second maps the layer-4 port number to a count of how many

messages are outstanding at each core for the given port num-

ber. When a new message arrives, the algorithm checks if

any of the cores that are running an application thread bound



Evaluation Method #3 – Network Simulations 

29

...

80 nanoPU clients

nanoPU server

3µs RTT

74 packet bottleneck queue


