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What is the nanoPU? (OSDI 21)

Data center applications are highly distributed and
increasingly fine grained.

Question:

What would it take to absolutely minimize median and
tail communication latency?
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Key Features:

* Integrated NIC

* Efficient core selection in HW

* Programmable transport in HW
* Direct path to CPU register file
* Hardware-accelerated thread scheduling

Wire-to-wire latency: 69ns
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gle-core throughput: 118Mrps




The nanoPU Core

Core

HW Thread Sched.

>
(D
Q
I_l.
2
t
(D
- Il
0)]




nanoPU Prototype

* Quad-core nanoPU based on RISC-V Rocket core (using Chipyard)
* 4,300 lines of Chisel code & 1,200 lines of C and RISC-V assembly for

custom nanokernel
* Implements NDP and Homa transport

* Cycle-accurate simulations (3.2GHz) on AWS FPGAs using Firesim
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Evaluation Method #1 — Python & Verilator

Simulations

Linux TAP
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* Hook up Chipyard Verilator simulations to Linux TAP interface

* Leverage powerful Python libraries
e Scapy — constructing, transmitting, receiving, parsing network pkts
* Pandas, NumPy — stats collection and numerical analysis

e Used for:

* Unit testing nanoPU apps
e Simple latency & throughput microbenchmarks




Evaluation Method #2 — Firesim Load Generator
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* Firesim load generator
* A modified Firesim switch model
* Cycle accurate, running on Host CPU
* Generates requests at configurable load, measures end-to-end response time

* Firesim enables us to simulate >10K requests in a couple minutes



nanoPU Applications

* MICA Key-Value Store:

—— Traditional nanoPU (naive) nanoPU (optimized)
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* Raft Consensus, Chain Replication, Set Algebra, and more!



Evaluation Method #3 — Network Simulations
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Network Workload Evaluations
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https://web.stanford.edu/~sarslan/files/NanoTransport--A_Low-Latency_Programmable_Transport_Layer_for_NICs.pdf

Firesim & HW Transport Protocol Verification

* Many CSPs are exploring and deploying custom transport protocols
offloaded to NIC HW

* These protocols are often complex with many tricky edge cases

* Firesim provides an opportunity to:

* Validate correct protocol implementation ...
Evaluate performance of the protocol ...
Using real applications ..

@ large scale ...
Before silicon tape out
Save a lot of time, money, and headaches



nanoSort

Low-latency, massively parallel sort algorithm using 16,384 cores in FireSim
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What?
Sort large datasets as quickly as possible.

Why?
Sort is essential for apps with latency deadlines.

How?

New algorithm that leverages low-latency nanoPU
communication stack.



GraySort Benchmark
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Sort Benchmark Home Page

New: We are happy to announce the 2021 winners listed below. The new, 2021 records are listed in green. Congratulations to the winners!

Background

Until 2007, the sort benchmarks were primary defined, sponsored and administered by Jim Gray. Following Jim's disappearance at sea in January 2007, the sort
benchmarks have been continued by a committee of past colleagues and sort benchmark winners. The Sort Benchmark committee members include:

» Chris Nyberg of Ordinal Technology Corp
* Mehul Shah of Amazon Web Services
+ George Porter of UC 5an Diego Computer Science & Engineering Dept

Top Results

Daytona

Indy

2016, 44.8 TB/min

Tencent Sort
100 TB in 134 Seconds
512 nodes x (2 OpenPOWER 10-core POWERS 2.926 GHz,
512 GB memory, 4x Huawei ES3600P V3 1.2TB NVMe 55D,
100GE Mellanox ConnectX4-EN)
Jie Jiang, Lixiong Zheng, Junfeng Pu,
Xiong Cheng, Chongging Zhao
Tencent Corporation
Mark R. Nutter, Jeremy D. Schaub

Gray

2016, 60.7 TB/min

Tencent Sort
100 TE in 98.8 Seconds
512 nodes x (2 OpenPOWER 10-core POWERS 2.926 GHz,
512 GB memory, 4x Huawei ES3600P V3 1.2TB NVMe 55D,
100Gk Mellanox Connect¥4-EN)
Jie Jiang, Lixiong Zheng, Junfeng Pu,
Xiong Cheng, Chongging Zhao
Tencent Corporation
Mark R. Nutter, Jeremy D. Schaub

2016, 51.44 / TB

NADSort
100 TB for 5144
394 Alibaba Cloud ECS ecs.ni.large nodes x
(Haswell E5-2680 v3, 8 GB memory,
Cloud 40GB Ultra Cloud Disk, 4x 135GE 550 Cloud Disk)
Qian Wang, Rong Gu, Yihua Huang
MNanjing University
Reynold Xin
Databricks Inc.
Wei Wu, Jun Song, Junluan Xia
Alibaba Group Inc.

2016, 51.44 / TB

NADSort
100 TB for 5144
394 Alibaba Cloud ECS ecs.ni.large nodes x
(Haswell E5-2680 v3, 8 GB memory,
40GB Ultra Cloud Disk, 4x 135GB 550 Cloud Disk)
Qian Wang, Rong Gu, Yihua Huang
Nanjing University
Reynold Xin
Databricks Inc.
Wei Wu, Jun Song, Junluan Xia
Alibaba Group Inc.

2016, 37 TB

Tencent Sort

2016, 55 TB
Tencent Sort
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Single Core Isn’t Fast Enough
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The nanoSort Algorithm

ooooooooooooooooo

000000

Shuffle initial keys among all nodes

Pick 16 “splitter” keys to delimit buckets
Partition nodes into 16 buckets

Send keys to nodes in each bucket

Al S

Recurse in each bucket

000000

A
o_ 49//// //// ///




nanoSort Implementation

nanoSort.c

* nanoSort implemented as a nanoPU C program

 Runs on cluster simulated with FireSim
e Uses 264 AWS EC2 instances (4,224 vCPUs)

O FireSim
o

dWS
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Network Topology

* Full bisection leaf-spine topo with 400G links
* Receiver-driven NDP transport protocol
* In-network support for reliable multicast

64 spine switches

256 leaf switches

16,834 nanoPUs
(x 4 = 65,536 cores)

nanoPU




Changes to FireSim

e Support for large scale Verilator simulations
* Instead of expensive F1 instances, use cheaper c4 instances
* Not worth FPGA flashing overhead for fast simulations

O
* Added reliable multicast to software switch o—ﬁo
* Switch caches packets in order to handle retransmissions

* Changed queueing in software switch — IO~
* Prioritize data over ACK packets [ O_’_.

VERILATOR
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nanoSort Evaluation on FireSim

nanoSort scales
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The Need to Minimize RPC Latency and
Software Overheads

Fine-grained Computing
 Video encoding (ExCamera

\ )

Large Online Interactive Services

cket

ATC’19)

and tail latency as well as software processing s (Locus

overheads?
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he nanoPU Fast Path
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The nanoPU Core
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The nanoPU Core
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Microbenchmarks
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. Wire-to-Wire Latency = 69ns

Wire-to-Wire Single Core Loopback

Latency (ns) Throughput (Mrps)
nanoPU 69 118
lceNIC 103 16
eRPC 850 10
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Evaluation Method #3 — Network Simulations

74 packet bottleneck queue

N~ nanoPU server

80 nanoPU clients
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