DNTNU

Norwegian University of Science and Technology

TraceDoctor: Versatile High-Performance Tracing for FireSim

FireSim and Chipyard User and Developer Workshop ASPLOS 2023, Vancouver, BC, Canada

Björn Gottschall and Magnus Jahre

Spoiler: They are all wrong! "TIP: Time-Proportional Instruction Profiling" [Micro21]

Ме

Ме

FireSim

Cycle-Accurate Full System Simulator

- Out-of-order, high performance, application class processor
- Full-stack Linux environment
 - \circ block devices
 - \circ networking
- Industry standard benchmarks
 - SPEC CPU2017
 - PARSEC

We want to know about every single instruction and cycle!

 \rightarrow No functional models \rightarrow No statistical sampling \rightarrow No SimPoints

Tracing in FireSim

AutoCounter

• Can provide statistical data from selected signals & registers

TracerV

- Traces out all retiring instructions
 - Binary, text or flamegraph format
- Triggers can limit tracing scope
- 64 bytes per cycle (binary)

SPEC CPU2017 bwaves on the SonicBoom

→ 2.8 trillion instructions → 6.8 trillion cycles

TraceDoctor

- Can attach to **any signals** within the simulated design and trace them out **every cycle**
- Utilizes a **buffered & parallel host framework** to process traced data
- A **flexible** worker design enables **efficient** and highly **customizable** trace processing

• We analyzed more than **300 trillion cycles** over **292 trillion dynamic instructions** amounting to **4.3 petabytes of data**

Host		
	TraceDoctor	
	DMA	
	TraceDoctor Bridge	
	Simulated System	
	FPGA	

TraceDoctor Overview


```
TraceDoctor - Writing a worker
How easy can it be?
```

```
td_binary::td_binary(
   std::vector <std::string> const args,
   struct traceInfo const info
): tracedoctor worker("TD Binary", args, info, 1) {}
```

```
void td_binary::tick(char const * const data, unsigned int const tokens)
{
    fwrite(data, tokens, info.tokenBytes,
        std::get<freg_descriptor> fileRegister[0]);
}
```

→ Thats all! This produces the same output as TracerV in binary mode.

TraceDoctor - Using our worker

How about automatic output compression?

+tracedoctor-worker=td_binary,file:binary-%id.bin.zst Just add a file extension e.g. .gz, .bz2, .xz or .zst

Trace Performance Evaluation

FireSim 1.15.1

TraceDoctor
 TracerV

- SonicBoom (4-wide) @ 3.2 GHz
- Xilinx Alveo u250 @ 70 MHz
- Buildroot Linux 5.7
- SPEC CPU2017 nab
 - Test input set
- TracerV & TraceDoctor
 - Tracing of 7 billion dynamic instructions over 16 billion cycles
- No file I/O latencies
 - Outputs are written to /dev/null

Trace Performance - Binary Output

Trace Performance - FlameGraph Output

Trace Performance - Text Output

-TraceDoctor-W3-TraceDoctor-TracerV-No Trace

Golden Reference

- 52 trillion dynamic instructions
 SPEC CPU2017 \w reference inputs
- Tracing data still on the order of petabytes of storage

Amazon S3 pricing			
First 50 TB / Month	\$0.023 per GB		
Next 450 TB / Month	\$0.022 per GB		
Over 500 TB / Month	\$0.021 per GB		

→ \$21.000 per petabyte per month

→ Performance alone is not enough

Golden Reference

- Do we need a trace of every dynamic instruction?
- Performance profiling is about which instruction, function and application consumes time
- We don't need the exact order of retirement

Top-10 Instructions of SPEC CPU2017 nab

0x30ca: fsqrt.d fs3,fs0 0x3902: fsqrt.d ft1,ft0 0x3924: fdiv.d ft1,fa5,ft1 0x30ee: fdiv.d fs3,fs11,fs3 0x38f2: frflags a5 0x30b8: frflags a3 0x3518: fsqrt.d fa1,fa1 0x38fa: fsflags a5 0x35f6: fsqrt.d fa4,fs11 0x238c: fsqrt.d fa0,fa0

- → Aggregate traces on-the-fly for all instruction addresses
- → The Golden Reference for Performance Profiling

Clustering SPEC CPU2017 Relative RISC-V Instruction **Count**

Clustering SPEC CPU2017 Relative RISC-V Instruction **Time**

Why is LBM such a lone wanderer?

• Top 10 Instructions with closest neighbor Parest

Performance siblings GCC and Perlbench

gcc perlbench

Profiler

0

→ A serial evaluation would have costed us \$170.000

Conclusion

- TraceDoctor is a high performance tracing interface for FireSim
- It is flexible, versatile and saves time and money!
- The first to enable end-to-end tracing in full-stack environments running industry benchmarks
- → Ready to be adopted by you and FireSim!

https://github.com/EECS-NTNU/chipyard/tree/tracedoctor

Thank You!

Björn Gottschall bjorn.gottschall@ntnu.no

NTNU Norwegian University of Science and Technology Magnus Jahre magnus.jahre@ntnu.no