Welcome to the First FireSim and
Chipyard User/Developer Workshop!

Sagar Karandikar
UC Berkeley

sagark@eecs.berkeley.edu We’ll get started at
9:10am pacific time

Program: https://fires.im/workshop-2023/
Workshop Slack: https://fires.im/workshop-slack/

OFSlid CHIPYARD

https://fires.im/workshop-2023/
https://fires.im/workshop-slack/

A Golden Age in Computer Architecture

* No more traditional scaling...

* An architect’'s dream: everyone
wants custom microarchitectures
and HW/SW co-designed systems

* Also, a golden age to have direct
Impact as researchers

« Exploding open-source hardware
environment

« An open-ISA that can run software
we care about

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-
Berkeley Architecture Research age-for-computer-architecture/fulltext)

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

A Dark Age in Computer Architecture tool 'éﬁ

* What do we need to do good architecture research?

* Need tools that let us evaluate designs on a variety of metrics:
* Functionality
» Performance
* Power
* Area
* Frequency

« Especially in small teams (grad students, startups), these tools need to be agile

« Historically, without good open IP, had to build abstract arch/uarch simulators
out of necessity

« But now, we have much better IP and software compatibility, so what's stopping us?

@ Berkeley Architecture Research 3

A Dark Age in Computer Architecture tool 'é$

* Designed to be operated by
hundreds of engineers

* Not, 10s of engineers or 1s-10s of
grad students

* Three hard questions:

 Where do | get a collection of well-
tested hardware IP + complex
software stacks that run on it?

« How do | quickly obtain performance
measurements for a novel HW/SW
system?

 How do | get ASIC QoR feedback and
tape-out a design, with portability
across tools and processes?

@? Berkeley Architecture Research 4

Three hard questions, answered! 'é%

* Where do | get a collection of well-tested hardware IP + complex
software stacks that run on it?

L FCHIP

* How do | quickly obtain performance measurements for a novel HW/SW

e O FireSim

* How do | get ASIC QoR feedback and tape out a design, with portability
across tools and processes? (and open-source and proprietary flows)

Hammer

@ Berkeley Architecture Research 5

Three hard questions, answered! 'é%&
tLJCHIP . OFireSim

Hammer

)

Measure Functionality, Performance, Power,
Area, Frequency for real HW/SW systems,
quickly and easily, with small teams of engineers

Berkeley Architecture Research 6

What is Chipyard?

CHIP Organization

Custom SoC
Configuration
. . y
What is Chipyard? RIL Generators
RISC-V Multi-level . Custom
. Cores Accelerators Gaches Peripherals Verilog
* An organized framework for
: : v
various SoC design tools ——
* A curated IP library of open- 10 and Harness Binding
source RISC-V SoC
FIRRTL IR
components T
i FireSim Transforms: VLSI Transforms:
’ A methOdOIOQy for aglle SOC FAME Decoupling Top and Harness Split
architecture deS|gn, FPGA Platform Mapping Replace Memories
: : Assertion/Printf Synthesis Module Promotion
exploration, and evaluation A i Ve
RAM Optimizations IO Cell Technology Mapping
v A 4 . 4 v
FireSim Behavioral FPGA-Mapped :
Verilog Verilog Verilog uEoivenos
* y \ 4
FireSim FPGA- Software RTL Simulation FPGA Hammer Automated
Accelerated Emulation | | [_Commercial] [[Open-Source] Prototyping VLSI Flow

CHIP What's included?

ores.

g Rocket and BOOM

a0
Lcyele redirect) | | MSUEtion Fetch & PreDecode (3 cycles)
= (16 Byte window)

Dense 115

PULP Coresin CHIP

2-cycle redirect

MEM W8 -
DTLB o RoGC predicor

‘Accelerator 4-Wide Decode.

Access

FrontEnd

1D Stage X Block

1T11 . = e

S = H e __J

Execute T Sg g = J

8¢ ‘ =

Rocket: ® o b 5 @5 £ o & |
Scheduler 5°

+ First open-source RISC-V CPU
* In-order, single-issue RV64GC core

8 8

« Efficient design point for low-power devices %Iuﬁllﬁl —
SonicBOOM: — == EUs CVAG6 (Formerly Ariane): Ibex (Formerly Zero-RISCY):
+ Superscalar out-of-order RISC-V CPU — Y * RVB4IMAC 6-stage single-issue in-order core * RVB4IMC 2-stage single-issue in-order core
+ Advanced microarchitectural features to maximize IPC l e m’ ey ‘ * Open-source * Open-source
« TAGE branch prediction, 000 load-store-unit, register T = e « Implemented in SystemVerilog + Implemented in SystemVerilog
renaming e Y N = - Developed at ETH Zurich as part of PULP, + Developed at ETH Zurich as part of PULP
7 + High-performance design point for general-purpose unie E— 9 « Now maintained by OpenHWGroup » Now maintained by lowRISC

New in Chipyard 1.9.0

Sodor Education Cores Spike —as —a-Tile

OO

Sodor Core Collection Digital SoC Architecture
+ Collection of RV32IM cores for Spike Tile —
teaching and educati < Spike:
eaching and education o < - Open-source RISC-V ISA
+ 1-stage, 2-stage, 3-stage, 5-stage libspike::processor_t simulator
implementations I « Fast, extensible, C++ functional
+ Micro-coded “bus-based” RISCV \ DP! Cal | model
implementation Opeode Sodor Micro-coded T T Spike-as-a-Tile:
‘ | « DPl interface between RTL SoC
+ Used in introductory computer R | ALUOp IdA 1aMA)] simulation and SoC functional
architecture courses at Berkeley L [i] model
[« Spike “virtual platform”
== « Enables testing of complex device
IN “: |:| software in RTL simulation
ImmSel| m “ Memory —
T enMem
] | sy | sz ..f
10 - T 1

&)

10

CHIP

Accelerator Sockets:

What’'s included?

RoCC Accelerators

1. Core automatically decodes + sends
custom instructions to accelerator

2. Accelerator can write back into core
registers

3. Accelerator can support virtual-
addressing by sharing core PTW/TLB

4. Accelerator can fetch-from/write-to
coherent L1 data cache or outer-
memory

1
BOOM/Rocket 2
3 Custom
TLBs PTW Accelerator
Implementation
L11$ L1D$ |—2
I ! 4
SystemBus
)]
L2 Peripherals

Flexible interface supports a variety of

accelerator designs

Included in Chipyard:

* Gemmini ML accelerator

* Hwacha vector accelerator
» SHAS3 accelerator

®

14

MMIO Accelerators

T MMIO
l Accelerator

MMIO Accelerators:
+ Controlled by MMIO-mapped
registers
» Supports DMA to memory system
» Examples:
* Nvidia NVDLA accelerator
* FFT accelerator generator

&)

CHIP

What’'s included?

Interconnect IP:

Digital SoC Architecture

-

Coherent Interconnect

1 ! ! 1
[Tile Bus | Tile Bus
1 v i
l System Bus l <
[Periphery Bus] [Front Bus]
I
Lo] [

TileLink Standard:

 TileLink is open-source chip-scale
interconnect standard

* Comparable to AXI/ACE

* Supports multi-core, accelerators,
peripherals, DMA, etc

Interconnect IP:

« Library of TileLink RTL generators
provided in RocketChip

* RTL generators for crossbar-based
buses

« Width-adapters, clock-crossings,
etc.

« Adapters to AX14, APB

11

18

Constellation NoC Generator

A parameterized Chisel
generator for SoC
interconnects

* Protocol-independent
transport layer

» Supports TileLink, AXI-4
* Highly parameterized
» Deadlock-freedom

* Virtual-channel wormhole-
routing

DRAM Channel

DRAM Channel

1/0

Medium Core

Big Core

Medium Core

Medium Core

(&)

Q

o

(o}
L2 Bank

L2 Bank
O

ML Accelerator

O++0

170

e
L2 Bank

o

L2 Bank l
o

(o]

Big Core sm}n Core s:nfall Core

8 ©
Small (Tore Small Gore

[

)

—®
NIC

Small Gore | Small Core

Small Core | Small Core

DRAM Channel

DRAM Channel

&)

CHIP

What’'s included?

Interconnect IP:

12

L2/DRAM

Digital SoC Architecture

Shared memory:
+ Open-source TileLink L2 developed by
SiFive
» Directory-based coherence with
MOESiI-like protocol
» Configurable capacity/banking
* Support broadcast-based coherence in
no-L2 systems
« Support incoherent memory systems
DRAM:
* AXI-4 DRAM interface to external
memory controller
* Interfaces with DRAMSIim

20

Peripheralsand 10

Digital SoC Architecture

Peripherals and 10:
* Open-source RocketChip blocks
* Interrupt controllers
* JTAG, Debug module,
BootROM
+ UART, GPIOs, SPI, 12C, PWM,
etc.
* TestChiplP: useful IP for test chips
* Clock-management devices
+ SerDes
« Scratchpads

13

Example from yesterday’s tutorial:

Sonic DRAM DRAM DRAM DRAM Sonic
BOOM ad Channel \agl Channel 0 Channel '.' Channel '0' BOOM
Rocket Rocket Rocket Rocket
Sonic Rocket Rocket Rocket Rocket ¢ Sonic
BOOM 0 I.I I.I 0 BOOM
L2 Bank L2 Bank L2 Bank L2 Bank
Rocket Rocket Rocket Rocket
Sonic Rocket Rocket Rocket Rocket Sonic
oo) 1) | o -on
L2 Bank L2 Bank L2 Bank L2 Bank
Rocket Rocket Rocket Rocket
Sonic Sonic
BOOM \ad Gemmini Gemmini Gemmini Gemmini \ad BOOM

TutorialManyCoreNoCConfig

6 X 4 mesh NoC

4 x Rocket + Gemmini
Accelerator Tiles

16 x Rocket Cores

8 x 10-wide SonicBoom
Tiles

8 x Banks of L2 cache

Total 28 coherent cores

Tutorial attendees
yesterday ran
through compiling
and simulating this
live, in <20 mins!

Flows

SW RTL Simulation: ——
 RTL-level simulation with Conﬁgfraﬂon
Verilator, Xcelium, or VCS RTL Generators
Hammer VLSI flow: %igsv Accelerators Mg;t;—:}zvsel Peripherals c\;/i?ﬁgr;

« Tapeout a custom config in
some process technology
» Portable across processes/tools

IO and Harness Binding
L 2 2

FIRRTL IR

FireSim:

* Fast, cycle-exact, and
deterministic FPGA-accelerated
simulations
Scale from 150+ MHz single-
SoC sims to 10+ MHz 1024 SoC
datacenter sims

FPGA prototyping:

 If your final deployment target is
an FPGA or as a bringup
platform for taped-out chips

\ 4 \ 4

FireSim Transforms: VLSI Transforms:
FAME Decoupling Top and Harness Split
FPGA Platform Mapping Replace Memories
Assertion/Printf Synthesis Module Promotion
ILA Wiring Module Grouping
RAM Optimizations IO Cell Technology Mapping
{ \ 4 A 4 v
FireSim Behavioral FPGA-Mapped :
Verilog Verilog Verilog yeohiellog

| |
* v v
FireSim FPGA- Software RTL Simulation FPGA Hammer Automated
Accelerated Emulation | | [_Commercial]| [Open-Source | Prototyping VLSI Flow

CHIP Community

Docs » Welcome to Chipyard’s documentation! © Edit on GitHub

Documentation:

* https://chipyard.readthedocs.io

* 140+ pages

Mailing List:

* google.com/forum/#!forum/chip
yard

Welcome to Chipyard’s documentation!

. FCHIP

Chipyard is a framework for designing and evaluating full-system hardware using

agile teams. It is composed of a collection of tools and libraries designed to provide
an integration between open-source and commercial tools for the development of

systems-on-chip.

3. Included RTL Generators o lmportant

4. Development Tools

5. VLS Flow New to Chigyard? Jump to the Initial
Repository Setup page for setup instructions.

6. Customization

Open-sourced:
e All code is hosted on GitHub

* [ssues, feature-requests, PRs
are welcomed

H ucb-bar, Chipya rd L\ Notifications Yy Star 500 % Fork 258

<> Code

¥ master ~ Go to file

15

https://chipyard.readthedocs.io/
https://groups.google.com/forum/
https://groups.google.com/forum/

e CAL It

‘A)

"~ B

s

H |

5

& |

R 5 /
L1 .

Proven in many Berkeley Architecture
courses

« Hardware for Machine Learning

» Undergraduate Computer Architecture

» Graduate Computer Architecture
« Advanced Digital ICs
« Tapeout HW design course

Advantages of common shared HW

framework

» Reduced ramp-up time for students

« Students learn framework once, reuse it in
later courses

« Enables more advanced course projects
(tapeout a chip in 1 semester)

For Education

Custom SoC
Configuration

A v

RTL Generators

Computer
Architecture
Class

RISG-V Accelerators iltiziavel Peripherals Gusiom
Cores Caches Verilog
/ v \
RTL Build Process
Intermediate
RISC-V Representation Process
Software Technology
A 7 L 4
FireSim VLSI
Transforms Transforms

A

N\ !
FPGA- Software
Accelerated \ RTL
Simulation Simulation

Automated
VLSI
Flow

Special Topics
Classes

Digital
Integrated Circuits
Class

17

Berkeley Engineering students pull off novel chip design in a single semester. The class shows successful model for

expanding entry into field of semiconductor design

Berkeley engineering students pull off novel chip

design in a single semester

Class shows successful model for expanding entry into field of
semiconductor design

What is FireSim?

FireSim at 35,000 feet

* Open-source, fast, automatic, deterministic FPGA-accelerated hardware
simulation for pre-silicon verification and performance validation

* Ingests:

* Your RTL design: FIRRTL (Chisel), blackbox Verilog
e Or Chipyard-generated designs with Rocket Chip, BOOM, NVDLA, PicoRV32, and more

* HW and/or SW 10 models (e.g. UART, Ethernet, DRAM, etc.)
* Workload descriptions

* Produces: Fast, cycle-exact simulation of your design + models around it

* Automatically deployed to on-prem or cloud FPGAs
e E.g., Xilinx Alveo or AWS EC2 F1

Berkeley Architecture Research 19

FireSim within an architect/chip-dev’s toolkit

1. High-level Simulation
2. Write RTL + Software, plug into your favorite ecosystem (e.g. Chipyard)

3. Co-design in software RTL sim (e.g. Verilator, VCS, etc.)
* Run microbenchmarks

4. Co-design in FPGA-accelerated simulation

* Boot an OS and run the complete software stack, é I:l reS| I I I

obtain realistic performance measurements

5. Tapeout - Chip

* Boot OS and run applications, but no more opportunity for co-design

@9 Berkeley Architecture Research 20

What about FPGA prototyping?

Taped-out SoC FPGA Prototype of SoC
Rocket
Core
1
DRAM Holis DRAM
1 Rocket
100ns 100ns

[

Rocket
Core
Rocket
Core
Rocket
Core
latency : SOC RTL latency m— SOC RTL

Rocket
taped-out ki on FPGA

Core
@1 GHz @100 MHz

[y

[

~ ~ ~ ~
[= | = = = =l B
(w) -_— (w) -_— w) -— (w) -—

SoC sees 100 cycle DRAM latency SoC sees 10 cycle DRAM latency
Incorrect by a factor of 10!

_ﬂ;:;} Berkeley Architecture Research

Difficulties with FPGA Prototypes

In an FPGA prototype:
* Every FPGA clock executes one cycle of the simulated target

* Performance of FPGA-attached resources is exposed to the
simulated world, e.g. DRAM, SD Card, UART, Ethernet, etc.
This leads to three problems:

1) Incorrect performance modeling: FPGA resources probably not an
accurate representation of target system
a) E.g., DRAM performance off by 10x on previous slide

2) Simulations are non-deterministic
3) Different host FPGAs produce different simulation results

Berkeley Architecture Research 22

Three Distinguishing Features of FireSim

1) Not FPGA prototypes, rather FPGA-accelerated simulators

* Automatic transformation of RTL designs into FPGA-accelerated
simulators via Host Decoupling

* Enables new debugging, resource optimization, and profiling
capabilities
2) Flexible scaling from on-prem to cloud FPGAs

* Scale easily from one or more on-prem FPGAs to massively parallel
simulations on elastic supply of cloud FPGAs

e Standardized host platforms = easy to collaborate with other
researchers and perform artifact evaluation

* Heavy automation to hide FPGA complexity, regardless of on-prem or
cloud platform

3) Open-source (https://fires.im)
Berkeley Architecture Research .

https://fires.im/

Benefits of Host Decoupling on FPGAS

Simulations will now:
* Execute deterministically
* Produce identical results on different hosts (FPGAs & CPUs)

Decoupling enables support for:
1. SW co-simulation (e.g. block device, network models)
2. Simulating large targets over distributed hosts (ISCA ‘18, Top Picks ‘18)

3. Non-invasive debugging and instrumentation (FPL ‘18, ASPLOS "20,
ASPLOS 23)

4. Multi-cycle resource optimizations (ICCAD ‘19)
Berkeley Architecture Research y

What Can You Do With
FireSim?

gﬁ} Berkeley Architecture Research

Example use cases: Evaluating SoC Designs

e “Classical” Performance Measurement
* Run SPECint 2017 with full reference inputs on Rocket Chip in parallel on ~10 FPGAs running at 150+

Mhz. Run the entire suite within a day! (e.g., in D. Biancolin, et. al., FASED, FPGA '19)

* Rapid Full-System Design Space Exploration
e Can rapidly sweep parameter space of a design with FireSim automation
» Data-parallel accelerators (Hwacha) and multi-core processors
» Complex software stacks (Linux, OpenMP, GraphMat, Caffe)

Tile 2

ha cket RISC-V Hwacha

Master Seq Application Processor 0 | | Vector Master Sequencer
T T v Accel. 0
RoCC

Vector Lane 1 Vector Lane 0 i - - . P itace Vector Lane 0 Vector L. 1
Vector Execution | [| | Vector Execution Floating Point Unit Vector i or
Unit (VXU) Unit (VXU) . (FPU) Unit (VXU) Unit (VXU)
I I | l 16 KB 16 KB | I
' L1D$ L11$

..........

Rocket RISC-V
ication Processol

Applicatiol cessor 1
Mem.
L,
RoCC Floating Point Unit
I face (FPU)

Vector Memory

Vector Memory

FPGA

Network
Controller
Block Device
Controller

TileLink Crossbar |-

UART
Controller

1

}

l

Vector Memory
Unit (VMU) 16 KB 16 KB Unit (VMU) Unit (VMU)
T T L1D$ L1I$ T LY
+ LY 7 1 L
. o ey — £ X 2 2 y
l Tilelink Crossbar I

°°°°°°°°

DDR Controller
+

DRAM Model

‘ 512/1024/2048 KB L2$

H

| Peripherals (UART, Block Device, NIC) TileLink Crossbar |

NEE
é@ Berkeley Architecture Research

26

Example use cases: Evaluating SoC Designs

* Security:
 BOOM Spectre replication Replicating Spectre-v1/2

* A.Gonzalez, et. al., Replicating_and Mitigating Spectre Attacks on an
Open Source RISC-V Microarchitecture, CARRV '19

* Keystone Enclave performance evaluation
* D. Lee, et. al., Keystone, EuroSys ‘20

e Accelerator evaluation

e Chisel-based accelerators:
* Machine learning (H. Genc, et. al., Gemmini, DAC 2021)

* Garbage collection (M. Maas, et. al., A Hardware Accelerator for
Tracing Garbage Collection, ISCA '18)

* Integrating Verilog-based accelerators:

* NVDLA (F. Farshchi, et. al. Intecgrating NVIDIA Deep Learnin
Accelerator (NVDLA) with RISC-V SoC on FireSim. EMC2 ’19?

* HLS-based rapid prototyping (Q. Huang, et. al., Centrifuge, ICCAD ‘19) Integrating NVIDIA Deep Learning Accelerator
e Scale-out accelerators (NVDLA) with RISC-V g

. Fgrza(?l Farshchi) 4Qijing Huang
* nanoPU NIC-CPU co-design (S. Ibanez, et. al., nanoPU, OSDI ‘21) Universiy of Kansas Univerity of Clilorg
* Protobuf Accelerator (S. Karandikar, et. al., A Hardware Accelerator -

]\‘/c\)/(Protc))col Buffers, MICRO "21. MICRO-54 Distinguished Artifact
inner.

Berkeley Architecture Research

27

Example use cases: Debugging and Profiling SoC

Designs

» Debugging and Profiling on the FPGA © Edit on GitHub

* Debugging a Chisel design at FPGA-

Debugging and Profiling on the FPGA
speeds

A common issue with FPGA-prototyping is the difficulty involved in trying to debug and profile
systems once they are running on the FPGA. FireSim addresses these issues with a variety of tools
for introspecting on designs once you have a FireSim simulation running on an FPGA. This section

* Many FireSim debugging features:
Assertion synthesis, printf synthesis, ILA DSy Sl e

2. Running FireSim Simulations . A 5
g e Capturing RISC-V Instruction Traces with TracerV
3. Building Your Own Hardware Designs

i n S e rt i O n , etc . (FireSim FPGA Images) o Building a Design with TracerV

o Enabling Tracing at Runtime

o Selecting a Trace Output Format

* e.g. FireSim Debugging Docs e e

Workloads o Interpreting the Trace Result
Targets o Caveats
Debugging in Software e Assertion Synthesis: Catching RTL Assertions on the FPGA

© Debugging and Profiling on the FPGA o Enabling Assertion Synthesis

Capturing RISC-V Instruction Traces o Runtime Behavior

CIENIEERY o Related Publications

Assertion Synthesis: Catching RTL

Assertions on the FPGA e Printf Synthesis: Capturing RTL printf Calls when Running on the FPGA
Printf Synthesis: Capturing RTL o Enabling Printf Synthesis

printf Calls when Running on the :

EPGA o Runtime Arguments

AutolLA: Simple Integrated Logic ° Related Publications

Anal ILA) Inserti 5 A 5
pelzellRllin=eruon o AutolLA: Simple Integrated Logic Analyzer (ILA) Insertion

AutoCounter: Profiling with Out-of-
Band Performance Counter o Enabling AutolLA

Collection o Annotating Signals

TracerV + Flame Graphs: Profiling o Setting a ILA Depth
Software with Out-of-Band Flame g 5
e G eten o Using the ILA at Runtime

Dromajo Co-simulation with BOOM ¢ AutoCounter: Profiling with Out-of-Band Performance Counter Collection
designs
o Chisel Interface

o Enabling AutoCounter in Golden Gate
o Rocket Chip Cover Functions
Supernode - Multiple Simulated SoCs o AutoCounter Runtime Parameters 28

Berkeley Architecture Research Per FPGA Mok oalo i

o Using TracerV Trigger with AutoCounter

Debugging a Hanging Simulator

Non-Source Dependency Management

Miscellaneous Tips

Example use cases: Debugging and Profiling SoC

Designs

AT LIVIE DY HILHTSID. wall g NI L

Assertions on the FPGA
Printf Synthesis: Capturing RTL

* Debugging a Chisel design at FPGA-

AutolLA: Simple Integrated Logic
Analyzer (ILA) Insertion

S p e e d S AutoCounter: Profiling with Out-of-

Band Performance Counter
Collection

[] 1 1 H ° TracerV + Flame Graphs: Profiling
a n y I re I l I l e u gg I n g e a u re S Software with Out-of-Band Flame
° Graph Generation
Dromajo Co-simulation with BOOM

Assertion synthesis, printf synthesis, ILA

Debugging a Hanging Simulator

I n S e r‘t I O n , etc . Non-Source Dependency Management

Supernode - Multiple Simulated SoCs
Per FPGA

* e.g. FireSim Debugging Docs

FireSim Asked Questions

(Experimental) Using On Premise
FPGAs

Overview & Philnsnnhv

& Read the Docs

Berkeley Architecture Research

o Printf Synthesis: Capturing RTL printf Calls when Running on the FPGA

o Enabling Printf Synthesis
o Runtime Arguments
o Related Publications

o AutolLA: Simple Integrated Logic Analyzer (ILA) Insertion

o Enabling AutolLA

o Annotating Signals

o Setting a ILA Depth

o Using the ILA at Runtime

o AutoCounter: Profiling with Out-of-Band Performance Counter Collection

o Chisel Interface

o Enabling AutoCounter in Golden Gate

o Rocket Chip Cover Functions

o AutoCounter Runtime Parameters

o AutoCounter CSV Output Format

o Using TracerV Trigger with AutoCounter
o AutoCounter using Synthesizable Printfs
o Reset & Timing Considerations

o TracerV + Flame Graphs: Profiling Software with Out-of-Band Flame Graph Generation

o What are Flame Graphs?

o Prerequisites

o Enabling Flame Graph generation in config_runtime.yaml

o Producing DWARF information to supply to the TracerV driver
o Modifying your workload description

o Running a simulation

o Caveats

* Dromajo Co-simulation with BOOM designs

o Building a Design with Dromajo
o Running a FireSim Simulation
o Troubleshooting Dromajo Simulations with Meta-Simulations

« Debugging a Hanging Simulator

o Case 1: Target hang.

o Case 2: Simulator hang due to FPGA-side token starvation.
o Case 3: Simulator hang due to driver-side deadlock.

o Simulator Heartbeat PlusArgs

Q@ Previous Next ©

29

Example use cases: Debugging and Profiling SoC

Designs

BOOM-v2 Assertion Results %

AAAAA

* Debugging a Chisel design at FPGA- e wl &

B ROOM = Directed tests and a randon

S p ee d S An open-source out-of-order pr¢ = VerilatorVCS/FPGA simula
resilient low-voltage operation in = VCS for post-glipar simulati| [N
. . . = Speculative 000 pipelines - —
* Many FireSim debugging features: il et vtoap i gl o
Assertion synthesis, printf synthesis, ILA L
. . Krste Asanovic, Da/(iﬂ Ee;\t;;;s%&nd Bol P
Insertion, etc. ,
’ : A RISC %S[u)clﬂ»}}ﬁ | » Cost: 2 x 50 cents / hour

=$5.12

« Total cost: $2 (compilation) + 2x $1.56 (simulation)

e e.g. FireSim Debugging Docs

* e.g. Fixing BOOM Bugs (D. Kim, et. al.,
DESSERT, FPL’18)

* Profiling a custom RISC-V SoC at

FPGA- d (') y
. e.g.SHpVS/eSWSCo-design of a networked RISC- /\ Flre Perf

V system (S. Karandikar, et. al., FirePerf,
ASPLOS 2020)

@9 Berkeley Architecture Research 30

Scaling fromr

a 150+ MHz Single SoC

simulation to a datacenter-scale
FireSim simulation

[1] S. Karandikar et. al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud.” ISCA 2018
[2] S. Karandikar et. al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud.” IEEE Micro Top Picks 2018

@9 Berkeley Architecture Research

31

Step 2: FPGA Simulation of one server blade

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

- 16 GB DDR3
Resource Util.
- <% of an FPGA
- % Mem Chans
] EPGA Sim Rate

Fabric -~150 MHz
- ~40 MHz (netw)

)

Other Periph.
Sim Endpoints

PCle to Host

i
(L)
—
(]

i
o

=
(O]

(a1
S
(]

e
)

O

< 0608 ll z)2

NIC Sim
Endpoint

[

DRAM Model

Step 2: FPGA Simulation of one server blade

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

- 16 GB DDR3
Resource Util.
- <% of an FPGA
- % Mem Chans
] EPGA Sim Rate

Fabric -~150 MHz
- ~40 MHz (netw)

]

Sim Endpoints

Other Periph.

PCle to Host

2
()
{ .
]

<
Q.

e
)

o
| -
]

<

)

@

< 0608 ll z)2

NIC Sim
Endpoint

[

DRAM Model

Step 3: FPGA Simulation of 4 server blades

Modeled System

Cost- Server - 4 Server Blades
$0.49 ver hour Blade - 16 Cores
' Simulation i

(SpOt) 64 GB DDR3
Resource Util.
-< 1 FPGA

1.65 per hour
(Sgn-deenand) Server Server - 4/4 Mem Chans
. Bla;dte_ X Bla;dte_ Sim Rate
imulation imulation _~14.3 MH3z

(netw)

Step 3: FPGA Simulation of 4 server blades

Modeled System
- 4 Server Blades

[PPON INVYHA

- 16 Cores

Simulation F P G . -64 GB DDR3

Resource Util.

FPGA

igey
9dd

° . -< 1 FPGA
4_ S I m S) Server Server (4 S I _4/4 Mem Chans
Blade Blade Sim Rate
Simulation § Simulation

-~14.3 MHz
(netw)

Step 4: Simulating a 32 node rack

Modeled System

- 32 Server Blades
- 128 Cores
Cost: - 512 GB DDR3
$2.60 per - 32 Port ToR
hour (spot) Switch

s, 01 24
S1320 per EEEE EEEN ||nkS

hour (on- Resource Util.
demand) - 8 FPGAs =
- 1x f1.16xlarge
Sim Rate
-~10.7 MHz

(netw)

Step 4: Simulating a 32 node rack

Modeled System

- 32 Server Blades
- 128 Cores
Cost: - 512 GB DDR3
$2.60 per - 32 Port ToR
hour (spot) Switch

s, 01 24
S1320 per EEEE EEEN ||nkS

hour (on- Resource Util.
demand) - 8 FPGAs =
- 1x f1.16xlarge
Sim Rate
-~10.7 MHz

(netw)

Step 4: Simulating a 32 node rack

rpGA | Frca |IEE-= 1 FPGA
(4 Sims) § (4 Sims) (4 Sims)

Host Instance CPU: ToR SW|tch Model

FPGA FPGA FPGA FPGA
(4 Sims) § (4 Sims) f§ (4 Sims) § (4 Sims)

Modeled System
- 32 Server Blades
- 128 Cores

-512 GB DDR3

- 32 Port ToR
Switch

- 200 Gb/s, 2us

links

Resource Util.

- 8 FPGAs =

- 1x f1.16xlarge
Sim Rate

-~10.7 MHz
(netw)

Step 5: Simulating a 256 node “aggregation pod”

Modeled System

- 256 Server
Blades

- 1024 Cores
-4 TB DDR3
- 8 ToRs, 1 Aggr

E— . - 200 Gb/s, 2us
Aggregation Switch links

Rack Rack Rack

— Resource Util.
1i= pE A _ 64 FPGAS _
Rack Rack Rack T - 8x f1.16xlarge
FPoa - Ix m4.16xlarge
Sim Rate

-~9 MHz (netw)

Step 5: Simulating a 256 node “aggregation pod”

Modeled System

- 256 Server
Blades

- 1024 Cores
-4 TB DDR3
- 8 ToRs, 1 Aggr

E— . - 200 Gb/s, 2us
Aggregation Switch links

— Resource Util.
1is pE A _ 64 FPGAS _
Rack Rack Rack Ty - 8x f1.16xlarge
rPoa - Ix m4.16xlarge
Sim Rate

-~9 MHz (netw)

Rack Rack Rack

Step 6: Simulating a 1024 node datacenter

Aggregation Pod

FPGA | FPGA =i | FPGA
ims) 4 sims) f =z [=z
Rack Rack Rack
FPGA FPGA
i (4 sims) (4 sims) i

Root Switch

Aggregation Pod | Aggregation Pod

Modeled System
- 1024 Servers

- 4096 Cores
-16 TB DDR3

- 32 ToRs, 4 Aggr, 1
Root

- 200 Gb/s, 2us
links

Resource Util.

- 256 FPGAs =

- 32x f1.16xlarge
- 5x m4.16xlarge
Sim Rate

-~6.6 MHz (netw)

Step 6: Simulating a 1024 node datacenter

Modeled System
- 1024 Servers

Harnesses millions of dollars of FPGAs 6 Cores
. B DDR3
to simulate 1024 nodes cycle-exactly ors, 4 A
with a cycle-accurate network simulation
and global synchronization

at a cost-to-user of only 100s of dollars/hour i ‘AJ“'-
w S =

- 32x f1.16xlarge
- 5x m4.16xlarge
Sim Rate

-~6.6 MHz (netw)

Gb/s, 2us

Aggregation Pod | Aggregation Pod

Productive Open-Source FPGA Simulation

ogithub.com/firesim/firesim, BSD Licensed

* An “easy” button for fast, FPGA-accelerated full-

system simulation
* Plugin your own RTL designs, your own HW/SW models

* One-click: Parallel FPGA builds, Simulation run/result collection,
building target software

e Scales to a variety of use cases:
* Networked (performance depends on scale)
* Non-networked (150+ MHz), limited by your budget

e firesimcommand line program
e Like docker or vagrant, but for FPGA sims

* User doesn’t need to care about distributed magic happening Y
behind the scenes

S

Berkeley Architecture Research FireSim Developer Environment 43

W

LY~

https://github.com/firesim/firesim

Productive Open-Source FPGA Simulation

* Scripts can call firesim to fully automate
distributed FPGA sim $ cd fsim/deploy/workloads

* Reproducibility: included scripts to reproduce ISCA 2018 results JEHRVA TS TF- 9 B =Y o

e e.g.scripts to automatically run SPECInt2017 with full reference
inputs in =1 day

* Many others included

» Several user papers have gone through artifact evaluation using
FireSim (nanoPU, FirePerf, Protobuf accel., MoCA, Simulator
Independent Coverage, etc.)

* 200+ pages of documentation: https://docs fires.im 17~

00000

* AWS provides grants for researchers:
https://aws.amazon.com/grants/ e e i

e Xilinx University Program provides FPGA donations

for university researchers:
https://www.xilinx.com/support/university.html

()
<y
!I 1 Y/

Berkeley Architecture Research a4

https://docs.fires.im/
https://aws.amazon.com/grants/
https://www.xilinx.com/support/university.html

On-premises FPGA support now available!

* High-level of automation/reproducibility enabled by FireSim on AWS
F1 cloud now extended to local/on-prem FPGAs:

 Went from new machine with no FPGA attached to working FPGA-accelerated
simulation in 1 hour and 40 mins

e Use existing FireSim features at-scale and locally!
e Cycle-accurate simulation
* Debugging
* Integrated logic analyzers, trace dumps, synth. assert/prints, co-simulation

» Software support
* FireMarshal workload management

e ...and more!

@9 Berkeley Architecture Research 4

Join the FireSim Community!:
Open-source users and industrial users

* More than 200 mailing list members « Companies publicly announced
" g " p " " y
and 850 unique cloners per-week using FireSim
- Projects with public FireSim support » Esperanto Maxion ET
. Chipyard * Intensivate IntenCore
+ Rocket Chip « SiFive validation paper @ VLSI'20
. BOOM » Galois (DARPA SSITH/FETT)

« Hwacha Vector Accelerator
« Keystone Secure Enclave
e Gemmini

* NVIDIA Deep Learning Accelerator
(NVDLA):
* NVIDIA blog post: https://devblogs.nvidia.com/nvdla/

« BOOM Spectre replication/mitigation
» Protobuf Accelerator

« Too many to list here! Esperanto announcement at RISC-V Summit 2018
@ Berkeley Architecture Research 46

https://devblogs.nvidia.com/nvdla/

Join the FireSim Community!:

Academic Users and Awards

* ISCA “18: Maas et. al. HW-GC Accelerator (Berkeley) « Awards: FireSim ISCA ‘18 paper:

« MICRO ‘18: Zhang et. al. “Composable Building Blocks to Open up * |EEE Micro Top Pick
Processor Design” (MIT) « CACM Research Highlights

Nominee from ISCA '18
* RTAS 20: Farshchi et. al. BRU (Kansas) . Awards: FireSim users:

* EuroSys ‘20: Lee et. al. Keystone (Berkeley) e ISCA ‘18 Maas et. al.:
i94. « |IEEE Micro Top Pick
* OSDI ‘21: Ibanez et. al. nanoPU (Stanford
() « MICRO ‘18 Zhang et. al.:
* USENIX Security ‘21: Saileshwar et. al. MIRAGE (Georgia Tech) - |EEE Micro Top Pick
* CCS ‘21: Ding et. al. “Hardware Support to Improve Fuzzing * MICRO "21 Gottschall et. al.
Performance and Precision” (Georgia Tech) * MICRO-54 Best paper runner-up
v _) « MICRO ‘21 Karandikar et. al.:
* MICRO ’21: Karandikar et. al. “A Hardware Accelerator for Protocol . MICRO-54 Distinguished Artifact
Buffers” (Berkeley/Google) winner
- MICRO ‘21: Gottschall et. al. TIP (NTNU) "o Micro Top Pick Honorable

DAC 21 Genc et. al.:
 DAC 2021 Best Paper winner

* Over 20 additional user papers on the FireSim website:
* https://fires.im/publications/#userpapers

@ Berkeley Architecture Research

47

Join the FireSim Community!:
Academic Users and Awards

* ISCA “18: Maas et. al. HW-GC Accelerator (Berkeley) « Awards: FireSim ISCA ‘18 paper:
* MICRO “18: Zhang et. al. “Composable Building Blocks to Open up * |IEEE Micro Top P'C_k _
Processor Design” (MIT * CACM Research Highlights

* RTAS “20: Fe

. EuroSys 20 FireSim has been used™ in published
iRy Wwork from authors at over 20 academic

+ USENIX Sec and industrial institutions
e CCS ‘21: Din
Performance

« MICRO ’21: *actually used, not only cited

Buffers” (BerRerey LRI
* MICRO ‘21: Gottschall et. al. TIP (NTNU)) :\I/EIEnEtimlcm Top Pick Honorable

« Over 20 additional user papers on the FireSim website: * DAC 21 Genc et. al.:
 DAC 2021 Best Paper winner

shed Artifact

* https://fires.im/publications/#userpapers
@; Berkeley Architecture Research "

New to FireSim/Chipyard?

Check-out the tutorials!

A full-day hands-on
introduction to FireSim and
Chipyard on AWS EC2 F1

https://fires.im/tutorial/

Slides from yesterday’s
tutorial are already available

We’'ll post videos and
getting started scripts
tomorrow

; Berkeley Architecture Research 49

https://fires.im/tutorial/

Let's get started!

Program: https://fires.im/workshop-2023/
Workshop Slack: https://fires.im/workshop-slack/

OFSlid CHIPYARD

https://fires.im/workshop-2023/
https://fires.im/workshop-slack/

