o o Instrumenting and Debugging
° FlreS|m FireSim-Simulated Designs

https://fires.im
Y @firesimproject

MICRO 2024 Tutorial

Speaker: Abe Gonzalez

Berkeley Architecture Research

5|

Tutorial Roadmap

‘ QEMU & Spike

RTL Build Process

FIRRTL IR SR Verilog
Transforms

Custom SoC
Configuration
|
\ 4 L 4
FireMarshal RTL Generators
Bare-metal & RISC-V Accelerators Multi-level Peripherals Custom
Linux Cores Caches P Verilog
Custom |
Workload

y

Software RTL Simulation

‘ VCS

Verilator

¥ ¥
FireSim FPGA-Accelerated Simulation Automated VLSI Flow
Simulation l§| Debugging |l Local/Meta Hammer ey lieel-
plugins plugins

@ Berkeley Architecture Research

* FPGA-Accelerated Deep-Simulation Debugging
* Debugging Using Integrated Logic Analyzers
* Trace-based Debugging
* Synthesizable Assertions/Prints

* Synthesizable Counters
* Hands-on example

* Debugging Co-Simulation
* FireSim Debugging Using Software Simulation

Berkeley Architecture Research 3

When SW RTL Simulation is Not Enough...

“Everything looks OK in SW simulation, but there is still a bug somewhere”

“My bug only appears after hours of running Linux on my simulated HW”

Berkeley Architecture Research

T LAS TRYING TO
FGURE. OUr WHY
MY BROWSER LWAS
ACTING WEIRD:

)

]

TURNS OUT IT WASNT
THE BROWSER-THE
ISSUE WAS ITH MY

PCIE CONTROLLER

/

]

DEBUGGING THAT™ LED
ME TO A MYSTERIOUS

ERROR MESSAGE. FROM
A SYSTEM UTILITY...

)

ANYWAY, LONG STORY SHORT,
T FOUND THE SWORD OF
I"HRTNTHE LARRIOR.

I THINK AT SOME
POINT THERE YOU
SUUZHED PUZ2LES.

W

FPGA-Based Debugging Features

* High simulation speed in FPGA-based simulation enables advanced
debugging and profiling tools.

* Reach “deep” in simulation time, and obtain large levels of coverage and
data

e Examples:
* [LAS
* TracerV
* AutoCounter

6E * Synthesizable assertions, prints
SW FPGA-based Simulated

Simulation Simulation Time

Berkeley Architecture Research 5

9

Debugging Using Integrated Logic Analyzers

From: aws-fpga cl_hello_world example

// Integrated Logic Analyzers (ILA)
. ila_o CL_ILA @ (
Integrated Logic Analyzers (ILAs)
(sh_ocl_awvalid_qg),
(sh_ocl_awaddr_q),

robeo
robel
robe2 (ocl_sh_awready_q),
robe3 (sh_ocl_arvalid_q),
robed
robes

T T T T T T

« Common debugging feature provided by FPGA vendors

(sh_ocl_araddr_q),
(ocl_sh_arready_q)
)5

* Continuous recording of a sampling window
* Up to 1024 cycles by default.

.S_BSCAN_shift(shift),
* Stores recorded samples in BRAM. e,

.S_BSCAN_sel(sel),

.S_BSCAN_tdo(tdo),

* Realtime trigger-based sampled output of probed signals

S_BSCAN_tck(tck),

// Debug Bridge

BSCAN_runtest(runtest),

* Multiple probes ports can be combined to a single trigger s),
* Trigger can be in any location within the sampling window o

* On the AWS Fl1-Instances, ILA interfaced through a
debug-bridge and server

@ Berkeley Architecture Research

Debugging Using Integrated Logic Analyzers

AutolLA — Automation of ILA integration with FireSim
* Annotate requested signals and bundles in the Chisel source code

* Automatic configuration and generation of the ILA IP in the FPGA
toolchain

e Automatic expansion and wiring of annotated signals to the top level
of a design using a FIRRTL transform.

* Remote waveform and trigger
setup from the manager
instance

1T
sss-amazon
Berkeley Architecture Research ¥ webservices .

BOOM Example

* Debugging an out-of-order processor is hard
* Throughout this talk, we’ll have examples of FPGA debugging used in BOOM.

 Example from boom/src/main/scala/lsu/dcache.scala

* Debugging a non-blocking data cache hanging after Linux boots

class BoomNonBlockingDCacheModule (outer: BoomNonBlockingDCache) extends LazyModuleImp (outer)
with HasLlHellaCacheParameters

{

implicit val edge = outer.node.edges.out (0)
val (tl out,) = outer.node.out (0)
val io = IO (new BoomDCacheBundle)

FpgaDebug (tl out)
FpgaDebug (1i0.req)
FpgaDebug (io.resp)
FpgaDebug (io.s1 kill)

FpgaDebug (io.nack)

Berkeley Architecture Research

Debugging using Integrated Logic Analyzers

Pros: Cons:

e No emulated parts — what you e Requires a full build to modify
see is what’s running on the visible signals/triggers (takes
FPGA several hours)

e FPGA simulation speed - O(MHz) * Limited sampling window size
compared to O(KHz) in software e Consumes FPGA resources
simulation

e Real-time trigger-based

@ Berkeley Architecture Research 9

TracerV

Out-of-band full instruction execution trace
* Bridge connected to target trace ports
By default, large amount of info wired out of
Rocket/BOOM, per-hart, per-cycle:

* Instruction Address

* [nstruction

* Privilege Level

* Exception/Interrupt Status, Cause
* TracerV can rapidly generate several TB of
data.

N

Trace Port Hart O

Rocket Chip

/
BOOM Chip

e <DMAPCI5\ TracerV
= roost Widget

N\

Trace Port Hart N

£

FAME-1 Transformed Region
FPGA

Berkeley Architecture Research 10

TracerV

e Out-of-Band: profiling does not perturb
execution

» Useful for kernel and hypervisor level cycle-
sensitive profiling
* Examples:
* Co-Optimization of NIC and Network Driver
* Keystone Secure Enclave Project
* High-performance hardware-specific code
(supercomputing?)

* Requires large-scale analytics for insightful
profiling and optimization.

Berkeley Architecture Research

IS
This
Slow

Benchmark Application

Linux

Linux Networking Stack

SimpleNIC Driver

SimpleNIC

RocketChip

11

Trigger Mechanisms

* Full trace files can be very large (100s GB — TB)
* We are usually interested only in a specific region of execution

* TracerV can be enabled based on in-band and out-of-band triggers
* Program counter

* Unique instruction config_runtime.yaml|
o tracing:
Cycle count o bie: no
* Can use the same trigger for some other #0 = no trigger
. ati #1 = cycle count trigger
simulation OUtpUtS #2 = program counter trigger
* AutoCounter perf. counters #3 = instruction trigger

selector: 1
startcycle: 0
endcycle: -1

Berkeley Architecture Research

Integration with Flame Graphs

* Flame Graph — Open-source profiling visualization tool

* Direct integration with TracerV traces
e Automated stack unwinding (kernel space)
* Automated Flame-graph generation

Flame Graph
|
|
|
| 1
| i
| |
/ | |
Tje Port Hart 0 _copy_user | [
. [copyout™™ T (EEcOpySUSERII | \
N Rocket Chi i
DMA PCls TracerV / P __co - copy —copym ‘ { =|‘
tttttt Widget . |__skb_datagram_iter | tcp_sendmsg_locked
R / BOOM Chip SKb_copy_datagram_ter tcp_sendmsg ' 1
tep_recvmsg inet_sendmsg | | [|
Trace Port Hart N inet_recvmsg sock_sendmsg __copy_user [|
| sock_read_iter sock_write_iter ey oo I
\] _vfsread s wite | []
vfsread Vfswrte | |l simple_copy_to_iter | __copy_user (| i
: FAME-1 Transformed Region ”'__-_dm{ﬁ—\ —I|-I y
check_syscall_nr [epadoidler R ‘tep_sendmsg_locked tc..
Host FPGA I - |

Berkeley Architecture Research .

TracerV

Pros: Cons:
e Qut-of-Band (no impact e Slower simulation
on workload execution) performance (40 MHz)
e SW-centric method e No HW visibility
e Large amounts of data e Large amounts of data

@ Berkeley Architecture Research 14

AutoCounter

e Automated out-of-band counter insertion

* Based on ad-hoc annotations and existing cover-points

* Noi ive RTL ch —
O I nvas |Ve C a nge Host Print
] Synthesis Unit
Cond
. R [f. d Logictgj E(?;ig
untime-conrigurate read rate ot S [Counter] Coumer
ogic ()
Count
Reader To Eth t
IﬁT\ alloc Send L [¢] erne
io.send.req.ready := state === s_idle Controller t-a] tl-d[{data Buffer Network
io.alloc.valid := helper.fire(io.alloc.ready, canSend) send req — F—VJ_
io.alloc.bits.id := xactId send comp <_DIE SoC Memory Interface
io.alloc.bits.count := (1.U << (reqSize - byteAddrBits.U)) recv req :II:}_
tl.a.valid := helper.fire(tl.a.ready, canSend) _l* tl-al tl-d _ h
£1.2.bite i edge.cet(recv comp <_DI._L acts data |Receive| From Ethernet
-a. = : [xacts | Buffer | Network
fromSource = xactId, Writer

toAddress = sendaddr,

lgSize = regSize)._2

cover((state === s_read) && xactBusy.andR && tl.a.ready, "NIC_SEND_XACT_ALL_BUSY", "nic send blocked by lack of transactions")
cover((state === s_read) && !io.alloc.ready && tl.a.ready, "NIC_SEND_BUF_FULL", "nic send blocked by full buffer")

cover(tl.a.valid && !tl.a.ready , "NIC_SEND_MEM_BUSY", "nic send blocked by memory bandwidth")

Berkeley Architecture Research 15

AutoCounter Example

* Example ad-hoc performance counters in the L2 cache

class SinkA (params: InclusiveCacheParameters) extends Module

{
val io = new Bundle {
val reqg = Decoupled(new FullRequest (params))
val a = Decoupled(new TLBundleA (params.inner.bundle)) .flip
val pb pop = Decoupled(new PutBufferPop (params)).flip
val pb beat = new PutBufferAEntry (params)

PerfCounter (io.a.fire(), "12 requests", "Number of requests to the first bank of the L2");

* Simple configuration (config runtime.yaml)
* Readrate - Trade-off visibility/detail and performance
* TracerV trigger - Collect results from singular point of interest

autocounter:
read rate: 1000000

Berkeley Architecture Research

AutoCounter Output CSV Schema

Version Version Number

D ' :
Clock Domain Domain Name

Name

Labels local_clock
Description local clock cycle
Event Width 1

Accumulator

Width o4

Type Increment

N Cycle @ time N
kN Cycle @ time kN

Berkeley Architecture Research

Multiplier

LabelO
DescO
WidthO

64

TypeO
ValueO @ time N

ValueO @ time kN

X

Labell
Descl

Width1
64

Typel
Valuel @ time N

Valuel @ time kN

Divisor

Y

17

AutoCounter Output CSV Schema

Version Version Number
St Tl Domain Name Multiplier X Divisor Y
Name
Labels local_clock LabelO Labell
Description local clock cycle DescO Noced
Event Width 1 WidthO
| More counters
Accumulator
Width o4 o4
Type Increment TypeO
N Cycle @ time N ValueO
kN Cycle @ time kN ValueO @ time kN Valuel @ time kN

@ Berkeley Architecture Research 18

AutoCounter Output CSV Schema

Version Version Number

Clock Domain

Domain Name
Name
Labels local_clock
Description local clock cycle
Event Width 1
Accumulator
Width o4
Type Increment
N Cycle @ time N
kN Cycle @ time kN

Berkeley Architecture Research

Multiplier

LabelO
DescO
WidthO

64

TypeO
ValueO @ time N

ValueO @ time kN

X

Labell
Descl

Width1
64

Typel
Valuel @ time N

Valuel @ time kN

Divisor

Y

More samples

19

Automated Performance Counters

Pros:

e Macro view of execution behavior

e Trigger integration

e Pre-configured cover points, no
RTL interference

e SW-controlled granularity
(tradeoff simulation for read rate)

@ Berkeley Architecture Research

Cons:

e New counters require new FPGA
images

e Simulation performance degradation
depending on read rate and number
of counters

20

Synthesizable Assertions

* Assertions — rapid error checking embedded in HW source code.
e Commonly used in SW Simulation

* Halts the simulation upon a triggered assertion. Represented as a “stop”
statement in FIRRTL

By default, emitted as non-synthesizable SV functions (Sfatal)

class Count extends Module {
AASPIRE

et Verification val io = IO(new Bundle {
) val en = Input(Bool
BROOM » Directed tests and a randomized torture generator. val done = gUt(Ut(BC(JC)Ji())
Ar_1 .open-source out-of-order prc = Verilator/VCS/FPGA simulation at RTL. 1 trii= 0 tp t(UInt(4.W
resilient low-voltage operation in:i =VCS for post-gl/par simulation. val cntr = Output(UInt(4.W))
: =9 = Speculative 000 pipelines are difficult to get good coverage on. 3) !))
- Need tests that build up a lot of speculative state. // count until 10 when ‘io.en' is high

DO - and platform-level use-cases. At (cntr, done) _ Counter(io‘eny 1@)
= Assertions are king.

SIS io.cntr := cntr
Christopher Celio, Pi-Feng Chi io.done := done
Krste Asanovic, Dmﬂ zzil]t;;;s%‘%nd Bori
‘ // assertion for software simulation
</ RISC-V /I SK!,&YE | 'i // “cntr' should be less than 10
21 assert(cntr < 10.U)
3
}
From: BROOM: An open-source Out-of-Order processor with resilient low-voltage operation in 28nm CMOQOS, From: Trillion-Cycle Bug Finding Using FPGA-Accelerated Simulation Donggyu Kim, Christopher Celio,

Christopher Celio, Pi-Feng Chiu, Krste Asanovic, David Patterson and Borivoje Nikolic. HotChip 30, 2018 Sagar Karandikar, David Biancolin, Jonathan Bachrach, Krste Asanovi¢. ADEPT Winter Retreat 2018
Berkeley Architecture Research 21

Synthesizable Assertions

* Synthesizable Assertions on FPGA
* Transform FIRRTL stop statements into synthesizable logic
* Insert combinational logic and signals for the st op condition arguments
* Insert encodings for each assertion (for matching error statements in SW)
* Wire the assertion logic output to the Top-Level

* Generate timing tokens for cycle-exact assertions
Assertion checker records the cycle and halts simulation when assertion is
triggered

[A

-
Top-level Module » > Top-level Module | PR | [7op-level Module

< ®m 9 3
Module A = § Module A 3 g Module A Iﬂ" Assertion
5 3 5__4._. 30 ||| 2 ¢ 7 TOL checker

7 3 d o >

stop(a) S

(o]

Berkeley Architecture Research 22

BOOM Example

* Example from boom/src/main/scala/exu/rob.scala

* Assert is the ROB is behaving un-expectedly
* Overwriting a valid entry

assert (rob val(rob tail) === false.B, "[rob] overwriting a valid entry.")
assert ((io.enqg uops(w).rob idx >> log2Ceil (coreWidth)) === rob tail)
assert (! (io.wb resps(i).valid && MatchBank (GetBankIdx (rob 1dx)) &&

'rob val (GetRowlIdx (rob 1dx))), "[rob] writeback (" + 1 + ") occurred to an
invalid ROB entry.")

Berkeley Architecture Research 23

BOOM Example

* How it looks in the UART output (while Linux is booting):

[.008000] VFS: Mounted root (ext2 filesystem) on device 253:0.

[.008000] devtmpfs: mounted

[.008000] Freeing unused kernel memory: 148K

[.008000] This architecture does not have kernel memory protection.

mount: mounting sysfs on /sys failed: No such device

Starting syslogd: OK

Starting klogd: OK

Starting mdev...

mdev: /sys/dev: No such file or directory

[id: 1840, module: Rob, path: FireBoom.boom tile 1l.core.rob]

Assertion failed: [rob] writeback (0) occurred to an invalid ROB entry.

at rob.scala:504 assert (! (io.wb resps(i).valid && MatchBank (GetBankIdx (rob idx)) &&

at cycle: 1112250469

*** FAILED *** (code = 1841) after 1112250485 cycles _
time elapsed: 307.8 s, simulation speed = 3.61 MHz It would take ~62 hours to hit
FPGA-Cycles-to-Model-Cycles Ratio (FMR): 2.77 thiS assertion is SW RTL

Beats available: 2165 c c -
Runs 1112250485 cycles simulation (at 5 KHz sim rate),

[FATL] FireBoom Test vs. just a few minutes in FireSim
SEED: 1569631756

at cycle 4294967295

Berkeley Architecture Research

Synthesizable printf

* Research feature presented in DESSERT [1] (together with assertions)
* Enable “software-style” debugging using print f statements

* Convert Chisel print £ statements to synthesizable blocks
* Appropriate parsing in simulation bridge
* Including signal values

* Impact on simulation performance depends

int main()

on the frequency of printfs.

printf(“Never more will not to be use pr

* Qutput includes the exact cycle of the
printf event

[H e I ps m ea S u re Cyc I eS CO u nts betwee n eve nts https://www.deviantart.com/stymOr/art/Bart-Simpson-Programmer-134362686

Berkelev Archi R h [1] Kim, D., Celio, C., Karandikar, S., Biancolin, D., Bachrach, J. and Asanovic, K., DESSERT: Debugging RTL Effectively with State Snapshotting for Error Replays across
erkeliey Arc Itecture Researc Trillions of cycles. The International Conference on Field-Programmable Logic and Applications (FPL), 2018 25

https://www.deviantart.com/stym0r/art/Bart-Simpson-Programmer-134362686

BOOM Example

* Example from boom/src/main/scala/lsu/lsu.scala

* Print a trace of all loads and stores, for verifying memory consistency.

if (MEMTRACE PRINTEFE) {
when (commit store || commit load)
val uop Mux (commit store, ' . uop, ldg(idx) .bits.uop)
val addr Mux (commit store, ' . addr.bits, 1ldg(idx) .bits.addr.bits)
(

val stdata = Mux(commit store, ' . data.bits, 0.0)
val wbdata Mux (commit store, stg(idx). debug wb data, ldg(idx) .bits.debug wb data)
printf (midas.targetutils.SynthesizePrintf ("MT %x %$x %x %$xX %x %$x %x\n",

io.core.tsc reg, uop.uopc, uop.mem cmd, uop.mem size, addr, stdata, wbdata))

Berkeley Architecture Research

Synthesizable print f£/Assertions

Pros:

e FPGA simulation speed
e Real-time trigger-based

e Consumes small amount of FPGA
resources (compared to ILA)

e Key signals have pre-written
assertions in re-usable
components/libraries

@ Berkeley Architecture Research

Cons:

e Low visibility: No waveform/state

e Assertions are best added while
writing source RTL rather than during
“investigative” debugging

e Large numbers of printfs can slow
down simulation

27

Spike Co-Simulation

* Spike — Golden reference RISC-V
functional simulator

* Can be used to debug BOOM in
FireSim through functional co-
simulation and comparison

* Find functional bugs billions of
cycles into simulations

* Find divergence against functional
golden model

 Dump waveforms for affected
signals

Berkeley Architecture Research

error] Spike PC ffffffe001055d84, DUT PC ffffffe001055d84
error] Spike INSN 14102973, DUT INSN 14102973

error] Spike MSTATUS a000000a0, DUT MSTATUS 00000000
error] DUT pending exception -1 pending interrupt -1
[ERROR] Copsike: Errored during simulation tick with 8191

[]

[]

[error] Spike WDATA 000220d6, DUT WDATA 000220d4
[]

[]

***% FATLED *** (code = 8191) after 2,356,509,311 cycles
time elapsed: 2740.8 s, simulation speed = 859.79 KHz
FPGA-Cycles-to-Model-Cycles Ratio (FMR): 8.14

Runs 2356509311 cycles

FAIL] FireSim Test

2 billion cycle divergence where receiving an
interrupt during mis-speculation affects
architectural state (EPC)

28

Spike Co-Simulation

Pros: Cons:

e FPGA simulation speed e Slower simulation

e Verify against golden performance (40 MHz)
model e No uarch verification

e Out-of-Band (no impact
on workload execution)

@ Berkeley Architecture Research 29

Hands on with AutoCounter

Berkeley Architecture Research

Hands-on Synthesizable AutoCounter Example

e We would like to observe some statistics about when Gemmini stalls

* SACYDIR/generators/gemmini/src/main/scala/gemmini/DMA.scala
e Line 324 and 637

Per fCounte r Q- RRg<t-Te \VAR Y

"cycles during which

Per fCounte rjgiEEaisukle BETY

"cycles during which

Per fCounte r Q- RRa<t-Te \VAR Y

"cycles during which

Per fCounte rjgiEEaiukle BETY

"cycles during which

Berkeley Architecture Research

translate g.io.deqg.valid && io.tlb.resp.miss, "rdma tlb wait cycles",

the read dma is stalling as it waits for a TLB response")

!'tl.a.ready, "rdma tl wait cycles",

the read dma is stalling as it waits for the TileLink port to be available")

translate g.io.deqg.valid && io.tlb.resp.miss, "wdma tlb wait cycles",
the write dma i1s stalling as it waits for a TLB response")
'tl.a.ready, "wdma tl wait cycles",

the write dma i1s stalling .. for the TilelLink port to be available")

Hands-on Synthesizable AutoCounter Example

* For reference, the build recipe for this FPGA image
(in SFDIR/deploy/config build recipes.yaml)is:

firesim gemmini rocket singlecore no nic:
DESIGN: FireSim R
TARGET CONFIG: FireSimLeanGemminiRocketConfig
IZWNBEOINUGCONERICHEN i thAutoCounter [BEFISINIGlolstiiNe)
deploy triplet: null

platfomm Conitle Args: This is already set for you!

fprga frequency: 10 . .
build strategy: TIMING Pre-enabl.lng the coupters in
the bitstream build!

post build hook: null
metasim customruntimeconfig: null
bit builder recipe: bit-builder-recipes/fl.yaml

Berkeley Architecture Research

Hands-on Synthesizable AutoCounter Example

Update our workload to copy the output printf file:
* vim SFDIR/deploy/workloads/resnet50-baremetal.json
e Add the AUTOCOUNTERFILE*.csv to our simulation output

"benchmark name": “resnet50-baremetal", . '
"common simulation outputs": | Make sure to avoid adding an

UTER SNl "' A UTOCOUNTERFILE* . csv" extra commal!

1,
A\Y

"common bootbinary": “...",
"common rootfs": “...%

Berkeley Architecture Research

Hands-on Synthesizable AutoCounter Example

run_ farm:
recipe arg overrides:

* Setupthe config runtime.yaml e .

target config:
* Select the AGFI that was synthesized with counters

t des: 1
* Select the baremetal ResNet50 workload 1 05

* Tell sample rate of counters to enable them switching latency: 10
. . . . net bandwidth: 200
* Boot the simulation by running the following sroELle latepvals =i

$ vim S$FDIR/deploy/config runtime.yaml

sequence of commands:

default hw config:
$ firesim infrasetup firesim gemmini rocket singlecore n
o nic

* This should take about 3 minutes

workload:
workload name: resnet50-
baremetal. json

* This should take about <1 minute Autocounter
BerkeleyArchitecture Research read rate: 10000000

S firesim runworkload

While this is running...

Berkeley Architecture Research

Debugging Using Software RTL Simulation

My FireSim Simulation Is Not Working

Adding/Modifying new
interfaces and bridges,
modifying simulation models

Modifying internal
simulated target hardware,
no new external endpoints

Target-Level SW Simulator-Level SW
Simulation Simulation

FPGA-Level SW
Simulation

Metasimulation

Berkeley Architecture Research

37

Debugging Using Software RTL Simulation

Target-Level : : FPGA-Level
. . Metasimulation : .
Simulation Simulation
e Software Simulation e Software Simulation e Software Simulation
e Target Design e Target Design e Target Design
Untransformed Transformed by Transformed by
e No Host-FPGA Golden Gate Golden Gate
interfaces e Host-FPGA e Host-FPGA
interfaces/shell interfaces/shell
emulated using simulated by the
abstract models FPGA tools

@ Berkeley Architecture Research 38

Debugging Using Software RTL Simulation

“FAME-1" Transformed RTL Design

Target-Level
SW Simulation <- Resp Queue

RTL Design

Req Queue ->

FPGA Fabric

Berkeley Architecture Research

DRAM

Physical
\YileYe =] yslca

DRAM

Mem
100 Channel

cycle
latency

100ns
latency

39

Debugging Using Software RTL Simulation

“FAME-1" Transformed RTL Design

Abstract

Target-Level Model

SW Simulation <- Resp Queue DRAM

Model
RTL Design

100
cycle
Req Queue -> latency

100ns
latency

FPGA Fabric

Berkeley Architecture Research 40

Debugging Using Software RTL Simulation

“FAME-1" Transformed RTL Design

A Jstract

Target-Level Nodel

SW Simulation <- Resp Queue DRAM

Model
RTL Design

100
cycle
Req Queue -> latency

100ns
latency

FPGA Fabric

Berkeley Architecture Research 41

Debugging Using Software RTL Simulation

I T

Target
Target
Meta
Meta
FPGA

@ Berkeley Architecture Research

On
Off
On
On

~5 kHz
~1 kHz
~4 kHz
~3 kHz
~2 Hz

~5 kHz
~5 kHz
~2 kHz
~1 kHz
N/A

N/A
N/A
N/A
~0.5 Hz

42

Back to our hands-on
example

Berkeley Architecture Research

Viewing the Simulation

Look for the run instance’s IP address in the status:

FireSim Simulation Status @ 2022-06-18 00:17:10.188191

This workload's output is located in:
/home/centos/chipyard/sims/firesim/deploy/results-workload/2022-06-18--00-16-00-
mobilenet-baremetal/

This run's log is located in:
/home/centos/chipyard/sims/firesim/deploy/logs/2022-06-18--00-16-00-runworkload-
NEZCRUKBA2M44BO9M. 1og

This status will update every 10s.

Hostname/IP: 192.168.3.52 | Job: resnet50-baremetall | Sim running: True

1/1 instances are still running.
1/1 simulations are still running.

Berkeley Architecture Research 45

Viewing the Simulation

* On the manager instance, ssh into the run farm instance:

S ssh 192.168.3.52

I N/ I/ \ | N NN Y /NN
I O 2 G I/ N E I T N B N VAR /o NTOIN/T T

L N/ /N N/ NS / /N N\ o
AMI Version: 1.11.4

Xilinx Version: 2021.1

Readme: /home/centos/src/README .md

AMI Release Notes: /home/centos/src/RELEASE NOTES.md
GUI/Cluster setup: https://github.com/aws/aws-fpga/blob/master/developer resources

* Then look at the stream of prints (or if complete, look at the output results)

S tail -f sim slot O/AUTOCOUNTER*

é_?.f, Berkeley Architecture Research
Y

46

Hands-on Synthesizable AutoCounter Example

Output file in

SFDIR/deploy/results-workload/<timestamp>-resnet50-baremetal/resnet50-baremetal 0/AUTOCOUNTERO.csVv

version, 1l
Clock Domain Name,

label, local cycle, ..rdma tlb wait cycles, .wdma tl wait cycles, ..wdma tlb wait cycles, ..rdma tl wait cycles
“description”,

type, Accumulate, Accumulate, Accumulate, Accumulate
event width, 1, 1, 1, 1

accumulator width, 64, 64, 64, 64

50000000, 50000000, 37, 245382, 2175, 287878

170000000,170000000,5416,5073118,56093,10989706

2320000000,2320000000,24953,15317004,364054, 25548250

... let’s view this as a table

Berkeley Architecture Research

Hands-on Synthesizable AutoCounter Example

Output file in

SFDIR/deploy/results-workload/<timestamp>-resnet50-baremetal/resnet50-baremetall/synthesized-prints.out

label 1oca1_¢ycle ..rdma ..wdma ..wdma ..rdma

tlb tl tlb tl

wait cycles wait cycles wait cycles wait cycles
50000000 50000000 37 245382 2175 287878
170000000 170000000 5416 5073118 56093 10989706

Sample at cycle 170M 24953 Showing waiting for memory response 482>0

(TileLink) is much higher than waiting
for a TLB response

Berkeley Architecture Research 48

Hands-on Synthesizable AutoCounter

XA[11)IE
Output file in

SFDIR/deploy/results-workload/<timestamp>-resnet50-baremetal/resnet50-baremetall/synthesized-prints.out

label local cycle |..rdma tlb w |.wdma tl wa |.wdma tlb w |.rdma tl wa
ait cycles it cycles ait cycles |it cycles

50000000 50000000 245382 2175 287878
170000000 171 If tail’ing the result... 10989706
2320000000 23 Exittail bydoingCtrl-c 25548250

* Then exit out of the simulation instance with
Ctrl-d to return to the manager instance

Berkeley Architecture Research 49

Hands-on Synthesizable AutoCounter Example

Don’t forget to terminate your runfarms (otherwise, we are going to
pay for a lot of FPGA time)

S firesim terminaterunfarm

Type yes at the prompt to confirm

Berkeley Architecture Research 50

The FireSim Vision: Speed and Visibility

* High-performance simulation
 Full application workloads
* Tunable visibility & resolution

* Unique data-based insights

Berkeley Architecture Research 51

Summary

* Debugging Using Integrated Logic Analyzers (docs)

* Advanced Debugging and Profiling Features
* TracerV (docs)
* AutoCounter (docs)
* Assertion and Print Synthesis (docs)

* Debugging Using Software Simulation (docs)
e Target-Level

e Metasimulation
e FPGA-Level

* FireSim Debugging and Profiling Future Vision

Berkeley Architecture Research 52

https://docs.fires.im/en/stable/Advanced-Usage/Debugging/Debugging-Hardware-Using-ILA.html
https://docs.fires.im/en/stable/Advanced-Usage/Debugging/TracerV.html
https://docs.fires.im/en/stable/Advanced-Usage/Debugging-and-Profiling-on-FPGA/AutoCounter.html
https://docs.fires.im/en/stable/Advanced-Usage/Debugging/DESSERT.html
https://docs.fires.im/en/stable/Advanced-Usage/Debugging/RTL-Simulation.html
https://docs.fires.im/

