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Agenda: What Will We Cover?

1)  The Compiler → Golden Gate

• Invoke it on example RTL

• Inspect its outputs

2) The Manager → firesim

• Explain how it’s configured

• Demonstrate how it’s used to build bitstreams
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Where is FireSim in Chipyard?

With the software RTL simulators!

~/chipyard-afternoon/sims/firesim 

→ This has been exported as $FDIR
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Interactive:
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# <open new terminal to ec2 instance>

$ tmux new –s afternoon

$ cd $FDIR

$ source sourceme-manager.sh

$ ls



FireSim’s Directory Structure

sim/

• Golden Gate lives here

• Scala & C++ sources for additional FireSim models 

• Make-based build system to invoke Golden Gate

deploy/

• Manager lives here

• FireSim workload definitions

platforms/ → FPGA platform definitions (e.g. AWS FPGA for F1, Xilinx Vitis for U250)

sw/ → target software & FireMarshal (more on this later)
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Agenda: What Will We Cover?

1)  The Compiler → “Golden Gate”

• Invoke it on example RTL

• Inspect its outputs

2) The Manager → firesim

• Explain how it’s configured

• Demonstrate how it’s used to build bitstreams
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An Analogy

• Golden Gate is like Verilator but for FPGA-accelerated simulation

Verilator generates C++ sources to simulate your design.

→ Compile and run on a CPU-host

Golden Gate generates C++ & Verilog to simulate your design.

→ Compile and run on a hybrid CPU & FPGA host
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Golden Gate Compiler
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Inputs: 

• FIRRTL & annos from a Chipyard generator

• Compiler configuration

→ Produces sources for a simulator that are:

• deterministic

• support co-simulation of software models

• area-optimized to fit more on the FPGA



Interactive:
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$ cd $FDIR/sim/generated-src/f1

$ ls

# here you’ll find output directories for all builds 

$ cd <any-directory-here>

$ ls



Inspecting the Outputs

<long-name>.fir & <long-name>.anno.json

• Target’s FIRRTL & annotations

FireSim-generated.sv

• The compiled simulator 

FireSim-generated.const.h

• Simulator’s memory map
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Agenda: What Will We Cover?

1)  The Compiler → Golden Gate

• Invoke it on example RTL

• Inspect its outputs

2) The Manager → firesim

• Explain how it’s configured

• Demonstrate how it’s used to build bitstreams
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Background Terminology
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“AGFI”: FPGA 
Bitstream for F1 

FPGAs



Using the firesim Manager Command Line

• Sourcing sourceme-manager.sh puts firesim on your path
• Can call firesim from anywhere on the instance

• It will always run from the directory:

$FDIR/deploy/

After a fresh clone, need to call:

firesim managerinit --platform f1

→ You already did this at the start of the tutorial
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Interactive:
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$ cd $FDIR/deploy

$ ls



Configuring the Manager. 4 files in firesim/deploy/
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config_build.yaml config_build_recipes.yaml config_hwdb.yaml config_runtime.yaml



Configuring a Build
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config_build.yaml config_build_recipes.yaml



Anatomy of a Build Recipe
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config_build_recipes.yaml

Consists of:

• A label 

• The tuple (DESIGN, TARGET_CONFIG, 
PLATFORM_CONFIG)

• Platform-specific bitstream 
generation parameters

WithNIC_DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_Wi

thFireSimHighPerfConfigTweaks_chipyard.QuadRocketConf

ig



Defining a Build Job: config_build.yaml
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Consists of:

• Build host platform configuration

• A list of recipes you’d like to batch out 
to a build farm



Defining a Build Job: config_build.yaml
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Once you’re done with builds:

• A list of recipes you’d like to share 
with other users



Running builds

• Once we’ve configured what we want to build, let’s 
build it

$ firesim buildbitstream

• This completely automates the process. For each 
design, in-parallel:
• Launch a build instance
• Generate target RTL & invokes Golden Gate
• Ship infrastructure to build instances, run Vivado FPGA 

builds in parallel
• Collect results back onto manager instance

• $FDIR/deploy/results-build/<TIMESTAMP>-
<tuple>/

• Email you the entry to put into config_hwdb.yaml
• Terminate the build instance
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Anatomy of a HWDB Entry

• Same label as before 

• The FPGA image

Hooks to change:

• Software models 

• Runtime arguments 

→ Without FPGA recompilation
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Summary

• Don’t fret if you didn’t catch everything, everything we showed you 
today is documented in excruciating detail at https://docs.fires.im

• We learned how to:
• Build FireSim FPGA images for a set of targets

• https://docs.fires.im/en/stable/Building-a-FireSim-AFI.html
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