
A Brief Tour of FireSim:
The Manager & Compiler;

Building Hardware Designs

Micro Tutorial 2024

Speaker: Joonho Whangbo
(Original slides by Abraham Gonzalez)

https://fires.im

@firesimproject

Agenda: What Will We Cover?

1) The Compiler → Golden Gate

• Invoke it on example RTL

• Inspect its outputs

2) The Manager → firesim

• Explain how it’s configured

• Demonstrate how it’s used to build bitstreams

2

Where is FireSim in Chipyard?

With the software RTL simulators!

~/chipyard-afternoon/sims/firesim

→ This has been exported as $FDIR

3

Interactive:

4

<open new terminal to ec2 instance>

$ tmux new –s afternoon

$ cd $FDIR

$ source sourceme-manager.sh

$ ls

FireSim’s Directory Structure

sim/

• Golden Gate lives here

• Scala & C++ sources for additional FireSim models

• Make-based build system to invoke Golden Gate

deploy/

• Manager lives here

• FireSim workload definitions

platforms/ → FPGA platform definitions (e.g. AWS FPGA for F1, Xilinx Vitis for U250)

sw/ → target software & FireMarshal (more on this later)

5

Agenda: What Will We Cover?

1) The Compiler → “Golden Gate”

• Invoke it on example RTL

• Inspect its outputs

2) The Manager → firesim

• Explain how it’s configured

• Demonstrate how it’s used to build bitstreams

6

An Analogy

• Golden Gate is like Verilator but for FPGA-accelerated simulation

Verilator generates C++ sources to simulate your design.

→ Compile and run on a CPU-host

Golden Gate generates C++ & Verilog to simulate your design.

→ Compile and run on a hybrid CPU & FPGA host

7

Golden Gate Compiler

8

Inputs:

• FIRRTL & annos from a Chipyard generator

• Compiler configuration

→ Produces sources for a simulator that are:

• deterministic

• support co-simulation of software models

• area-optimized to fit more on the FPGA

Interactive:

9

$ cd $FDIR/sim/generated-src/f1

$ ls

here you’ll find output directories for all builds

$ cd <any-directory-here>

$ ls

Inspecting the Outputs

<long-name>.fir & <long-name>.anno.json

• Target’s FIRRTL & annotations

FireSim-generated.sv

• The compiled simulator

FireSim-generated.const.h

• Simulator’s memory map

10

Agenda: What Will We Cover?

1) The Compiler → Golden Gate

• Invoke it on example RTL

• Inspect its outputs

2) The Manager → firesim

• Explain how it’s configured

• Demonstrate how it’s used to build bitstreams

11

Background Terminology

12

“AGFI”: FPGA
Bitstream for F1

FPGAs

Using the firesim Manager Command Line

• Sourcing sourceme-manager.sh puts firesim on your path
• Can call firesim from anywhere on the instance

• It will always run from the directory:

$FDIR/deploy/

After a fresh clone, need to call:

firesim managerinit --platform f1

→ You already did this at the start of the tutorial

13

Interactive:

14

$ cd $FDIR/deploy

$ ls

Configuring the Manager. 4 files in firesim/deploy/

15

config_build.yaml config_build_recipes.yaml config_hwdb.yaml config_runtime.yaml

Configuring a Build

16

config_build.yaml config_build_recipes.yaml

Anatomy of a Build Recipe

17

config_build_recipes.yaml

Consists of:

• A label

• The tuple (DESIGN, TARGET_CONFIG,
PLATFORM_CONFIG)

• Platform-specific bitstream
generation parameters

WithNIC_DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_Wi

thFireSimHighPerfConfigTweaks_chipyard.QuadRocketConf

ig

Defining a Build Job: config_build.yaml

18

Consists of:

• Build host platform configuration

• A list of recipes you’d like to batch out
to a build farm

Defining a Build Job: config_build.yaml

19

Once you’re done with builds:

• A list of recipes you’d like to share
with other users

Running builds

• Once we’ve configured what we want to build, let’s
build it

$ firesim buildbitstream

• This completely automates the process. For each
design, in-parallel:
• Launch a build instance
• Generate target RTL & invokes Golden Gate
• Ship infrastructure to build instances, run Vivado FPGA

builds in parallel
• Collect results back onto manager instance

• $FDIR/deploy/results-build/<TIMESTAMP>-
<tuple>/

• Email you the entry to put into config_hwdb.yaml
• Terminate the build instance

20

Anatomy of a HWDB Entry

• Same label as before

• The FPGA image

Hooks to change:

• Software models

• Runtime arguments

→ Without FPGA recompilation

21

Summary

• Don’t fret if you didn’t catch everything, everything we showed you
today is documented in excruciating detail at https://docs.fires.im

• We learned how to:
• Build FireSim FPGA images for a set of targets

• https://docs.fires.im/en/stable/Building-a-FireSim-AFI.html

22

https://docs.fires.im/
https://docs.fires.im/en/stable/Building-a-FireSim-AFI.html

	Slide 1: A Brief Tour of FireSim: The Manager & Compiler; Building Hardware Designs
	Slide 2: Agenda: What Will We Cover?
	Slide 3: Where is FireSim in Chipyard?
	Slide 4: Interactive:
	Slide 5: FireSim’s Directory Structure
	Slide 6: Agenda: What Will We Cover?
	Slide 7: An Analogy
	Slide 8: Golden Gate Compiler
	Slide 9: Interactive:
	Slide 10: Inspecting the Outputs
	Slide 11: Agenda: What Will We Cover?
	Slide 12: Background Terminology
	Slide 13: Using the firesim Manager Command Line
	Slide 14: Interactive:
	Slide 15: Configuring the Manager. 4 files in firesim/deploy/
	Slide 16: Configuring a Build
	Slide 17: Anatomy of a Build Recipe
	Slide 18: Defining a Build Job: config_build.yaml
	Slide 19: Defining a Build Job: config_build.yaml
	Slide 20: Running builds
	Slide 21: Anatomy of a HWDB Entry
	Slide 22: Summary

