. : FireSim Updates — FireAxe
0 I:l reS| m Multi FPGA FireSim

Support

https://fires.im
3 @firesimproject

Speaker: Joonho Whangbo

Berkeley Architecture Research

O Large designs don't fit on one FPGA 9

« Suppose we want to simulate an

SoC with:

« 24 Berkeley OoO machine
(BOOM)
« 3 wide out-of-order
I , processor
L?$ L?$ L?$ 12 Periphfy Bus ¢ 0.79 mm?
ooyt] - Last level cache
L URRT ”“S . 2MB capacity, 4 banks

* Peripherals
« >18.7 mm? ASIC area w/

commercial 16nm
 SoC doesn’t fitin an FPGA

@ Berkeley Architecture Research 2

FPGA 1

Solution - Partition the design onto multiple O
FPGAS

 Partitioning onto multiple
FPGASs: higher simulation
capacity

I A I BN — Hand partitioning is

undesirable

« Compiler: Automate the
partitioning process

@ Berkeley Architecture Research 3

o FireRipper: FireAxe’s compiler Input design / flags d

‘ FireAxe Compller

Module Grouping

Boundary Analysis

(Option) Partition Opt.

Comm. Collateral

Gen,
v

Golden Gate / FPGA
Mapping

v

Partitioned FPGA accelerated
@ Berkeley Architecture Research RTL S|mUIat|0n

o Boundary analysis & comm. collateral generation 6

FireAxe Compiler

Module Grouping

(Option) Partition Opt.

@ Berkeley Architecture Research

@ Berkeley Architecture Research

O LI-BDN —decouple the notion of time

Input
_Channels

@ Berkeley Architecture Research

fireFSM S 2 _ _

ACYTYYN

\
oFsM %

Output
.ghanngl

*

O LI-BDN —decouple the notion of time

Input
_Channels

@ Berkeley Architecture Research

Host cycle: O Target cycle: O

—‘\

/("7\.\

e
~ oFSM ,

Output
ghanngl

[T 2

O LI-BDN —decouple the notion of time

Input Host cycle: 1 Target cycle: 0 OQOutput
Channel

Channels

[T 2

@ Berkeley Architecture Research

O LI-BDN —decouple the notion of time

Input Host cycle: 2 Target cycle: 0 OQOutput
Channel

Channels

- eper aepgeer agae ey

@ Berkeley Architecture Research

[T 2

10

O LI-BDN —decouple the notion of time o

Input Host cycle: 3 Targetcycle: 1 Output

Channels Channels
T e 1
N T T TR [P |

A v L1 C
R I R
N I
T ST YN !

B b ; _ | - L1 D
I : : : L_ \fireFSI\/l\':____>r~OFSM\/_ : : :
S P -_‘\/0_, \'\\/g"- S E—

@ Berkeley Architecture Research 11

O Boundary analysis — Comb. Logic

________ = = = = = - -
y TR

@ Berkeley Architecture Research

O Boundary analysis — Comb. Logic

FPGA 1: 100MHZz

FPGA 2: 100MHz

1

@ Berkeley Architecture Research

13

O Boundary analysis — Comb. Logic

FPGA 1: 100MHz FPGA 2: 100MHz

LI-BDN_ Tokens LI-BDN 2
[()

@ Berkeley Architecture Research

Token cannot be sent r
because B Is

FPGA 1: 100MHz combinationally

dependent on C
LI-BDN_ Toke LI-BDN 2

==
- as oo e o o o o o »: :-—————-

O Boundary analysis — Comb

@ Berkeley Architecture Research 15

O Boundary analysis — Comb.| Token cannot be sent
| because D Is
FF |

/ Circular dependency: |
\ Simulator deadlock)

é Preventing deadlocks by splitting the channels

FPGA 1: 100MHZz

LI-BDN_\

FPGA 2: 100MHz

LI-BDN 2

10

@ Berkeley Architecture Research

é Preventing deadlocks by splitf ~ Output tokens that
depends only on seq.

FPGA 1: 100MHz logic can be sent
Independently
LI-BDN_\ | LI-BDN 2
I |

10

@ Berkeley Architecture Research 18

o Preventing deadlocks by splitt

Output tokens that
depends only on comb.
logic can be computed

FPGA 1: 100MHZz

LI-BDN_\
| |

LI-BDN 2

1O

@ Berkeley Architecture Research 19

O Case Study: Partitioning a large 000 Core

€y

FrontEnd
ICache
TLB* L1 Instruction Cache
ICache 32*-KiB 8*-way
Tags*

Fetch-Target-
Queue
(32*-entry)

16 Bytes/cycle

Instruction Fetch & PreDecode (4 cycles)
(16* Byte window)

BTB*
(1-cycle redirect)

Gshare* BPU
(3-cycle redirect)

Inst Inst Inst Inst Inst Inst Inst Inst
Fetch Buffer
(32* entries)

Inst Inst Inst Inst

4*-Wide Decode
Return Address
Stack (RAS) Decoder || Decoder || Decoder || Decoder
uOP uOP uopP uoP
Execute Rename / Allocate / Retirement
ReOrder Buffer (128* entries)
HOP HOP HOP HOP
Floating-point Distributed Scheduler
Physical Register
Filo
(128* Registers) FP Issue INT Issue Queue MEM Issue
Queue 32 entries Queue
Integer Physical 32* entries 32* entries
Register File
(128" Regi

| Port [] Port || Port

Port [| Port [] Port || Port |

HOP uoP HoP uorP HOP HoP HorP
ALU ALU ALU FPU FPU || acu || Acu
Branch || CSRs IMul FDiv__|[FPTolnt |[storeData]| store pata

InToFP | RoCC | pyjxg

Load Queue
(32* entries)

Store Buffer & Forwarding

Bicydle (32" entries)

8B/eycle

8Bicycle 8Blcycle

L1 Data Cache & MSHRs

32* KiB 8*-Wa
| Load/Store | D.(I.;f;t'e y

Line Fill Buffers
(10* entries)

Unit

128bity

128bit/t

« Larger variant of BOOM

« 6 wide issue

216 ROB entries

e 115 I-phys reg / 132 F-phys reg
« 76 Ld queue entries

« 45 St queue entries

partition boundary

FireAxe Campiler
|

™ Coton Cattien

1.56 mm? in commercial 16nm tech
Over 7000 bits going through the

20

O Case Study: Partitioning a large 000 Core

10'\/” 10
90%
80%
70%
2
2 60%
=
g -
83 50%
> o |82
og S |e=
o l5]5e 40%
g $|2a
g |2 |38
25 % |5 30%
E=1 c
3 ER
g |E 20%
225 |, 10%
0 s
2 %7 |5 0%
= 598
= £
o

@ Berkeley Architecture Research

|
Z, 7,

Thanks to FireAxe,
we can obtain CPI
stacks for large cores

Large GC40 | Large GC40 | Large GC40 | Large Large

matmult-int nettle-aes nbody st
B Commit [MLdStall COStStall EALU Stall Frontend O Misc

ud

GC40

FireAxe Campiler

ichmarks
h)

21

o Optional partitioning optimizations

FireAxe Compiler

Module Grouping

Boundary Analysis

Comm. Collateral
Gen.

@ Berkeley Architecture Research

O Optional partitioning optimizations

Memory Bus

Periphery Bus

@ Berkeley Architecture Research

UART || Control Bus

{
PLIC J
CLINT

Use microarchitectural
semantics to improve
partitioned simulation
performance

O Optional partitioning optimizations

* Latency insensitive
boundaries
* Latency sensitive

components cannot scale
over a certain degree

Free

Credit Credit

@ Berkeley Architecture Research *

24

O Optional partitioning optimizations

 Ready-valid interface (decoupled)
e Core-bus boundaries

* We can inject latency in between the interfaces
* Nearly 2x increase in simulation throughput

 Modify target boundary for functional
correctness

* Slight accuracy degradation (partition boundary)

 Can be used for early-stage performance
estimation

25

O Optional partitioning optimizations

|

Credit based interfaces
NoC router node boundaries

No target boundary modifications
Latency-insensitive
No comb-deps

Narrow partition boundary
Map SoC topology onto FPGA topology

26

O Partitioning & FPGA resource opt. synergy

@ Berkeley Architecture Research

FireAxe Compller

Module Grouping

Boundary Analysis

Comm. Collateral
Gen,

v

Golden Gate / FPGA
Mapping

o

27

O Partitioning & FPGA resource opt. synergy

C C C C Sometimes, modules are
stamped out multiple times

O O O O (e.g. cores)

r I r r * FireSim can employ simulator
level multithreading to save

€ c € € FPGA resources

ke, fukt e 28

O Partitioning & FPGA resource opt. synergy

 Example partitioned
simulation

* FPGA resource consumption
is proportional to the number
of cores

29

O Partitioning & FPGA resource opt. synergy

* FPGA resource optimization

* (Can share combinational logic and
only replicate sequential logic

* Time / FPGA resource tradeoff

* Tosimulate 1 target cycle
* 4 host-FPGA cycles

* 10~50 inter-FPGA communication
cycles

* Overhead of multithreading
hidden due to inter-FPGA link
latency!

30

O Supported FPGA platforms

e Cloud EC2 F1 instances

* Direct peer to peer PCle FPGA
communication scheme

e Local FPGAs

e Xilinx U250s connected via
cheap QSFP direct attach
cables

e 2x simulation performance vs
EC2 F1 instances due to direct
links

@ Berkeley Architecture Research

Passive Option

31

é Performance characteristics — 2 FPGA on-premises

@®-Exact-10MHz -&Exact-50MHz @ Fast-10MHz
A Fast-50MHz ‘B Fast-70MHz

NN
o w

EJ !

OO = =&
L 0 O W U

LCIDJ :

Simulation Frequency (MHz)

O
(@} [OV

618 1236 2476 4960 9936

Partition Interface Width (bits)
@ Berkeley Arcnitecture kesearc.,

O Performance Characteristics

©

23
T 20
2

>18
€15

S
g 13

Simulation F
=
D

©o o oo

1

Simulation Frequency (MHz)
C

© © o o o©

o

[\ 8] B [«)

®-Exact-10MHz &Exact-50MHz -@Fast-10MHz
-& Fast-50MHz ‘B Fast-70MHz

~1.4
N
I
S12

S1.0
C -
Q
=5

0.8
@

L=
w A -~

®-Exact-10MHz -kExact-50MHz #Exact-90MHz
-® Fast-10MHz -& Fast-50MHz -E Fast-90MHz

.....

.

e
“ae
L.
.
.....
R -
.....

ey
L.
e
Tes
......
L]
e
LT
.

More performance

AL
*ees

LT

Number of FPGAs Connected as a Ring

- results In the paper!

Simulation Freq

o

.
e,
.
.
.

0
‘e,
.
0
*e
*e
.
e

e
*e
......
e
.

e
.
......
.
.

1 2 3 4 5 6

Number of FAME-5 BOOM Tiles

33

es)

|

T T

Q
X)

=2
S -

.
.t
.
.
.t

O Case studies o

I s ml ~ 1

Found RTL Reprdﬂﬁduce full--
bug 3 billion . | ~ stack system
cycles into level effects

lseveabatioreL | .

@ Berkeley Architecture Research GOMAXPROCS

Tail Latency (ms)

O Extensive document support

 As all FireSim features, there
is extensive documentation
support

Setting up the F1/local FPGA
instances

Commands & configuration

Examples provided for various
partitioning topologies and
optimization flags

Running FireAxe metasims for
debugging

Berkeley Architecture Research

(Experimental) Xilinx Alveo U250 Vitis-
based Getting Started Guide

Manager Usage (the firesim command)

Workloads

Targets

Debugging in Software

Debugging and Profiling on the FPGA
Non-Source Dependency Management

Supernode - Multiple Simulated SoCs
Per FPGA

B FireAxe - Partitioning onto Multiple
FPGAs

FireAxe Overview

Partition Modes

Supported Platforms

Running Fast Mode Simulations
Running Exact Mode Simulations

Running NoC Partition Mode
Simulations

Miscellaneous Tips
Miscellaneous Tips
Adding support for a new FPGA
@ Using FireSim without Chipyard

FireSim Asked Questions

Overview & Philosophy

Target Abstraction & Host Decoupling
Target-to-Host Bridges

Bridge Deep Dive

Simulation Triggers

Optimizing FPGA Resource Utilization
Output Files

Compiler & Driver Development

Complete FPGA Metasimulation

Visual Studio Code Integration

FireAxe - Partitioning onto Multiple FPGAs

Although FPGA capacity has become large enough to simulate many large SoCs, there still are cases
when a design does not fit on a single FPGA. When the design contains multiple duplicate modules,
you should refer to the Multithreading section first. When there aren’t enough duplicate modules
you can use FireAxe to obtain higher simulation capacity. FireAxe is also compatible with
Multithreading as well which enables scaling the size of the design even further.

FireAxe Partitioning onto Multiple FPGAs:
» FireAxe Overview
» Partition Modes

o Exact-Mode
e Fast-Mode
o NoC-Partition-Mode

» Supported Platforms

o EC2F1
o Local FPGAs w/ QSFP Cables

» Running Fast Mode Simulations

e 1. Building Partitioned Sims: Setting up FireAxe Target configs
o 2, Building Partitioned Sims: config_build_recipes.yaml

e 3. Running Partitioned Simulations: user_topology.py

o 4, Running Partitioned Simulations: config_runtime.yaml

* Running Exact Mode Simulations

o 1. Building Partitioned Sims: Setting up FireAxe Target configs
o 2. Building Partitioned Sims: config_build_recipes.yaml

o 3. Running Partitioned Simulations: user_topology.py

o 4, Running Partitioned Simulations: config_runtime.yaml|

+ Running NoC Partition Mode Simulations

o 1. Building Partitioned Sims: Setting up FireAxe Target configs
o 2. Building Partitioned Sims: config_build_recipes.yaml

o 3. Running Partitioned Simulations: user_topology.py

e 4. Running Partitioned Simulations: config_runtime.yaml

« Miscellaneous Tips

o Running FireAxe Metasims

@ Previous Next @

O Conclusion

* FireAxe enables agile teams to rapidly & accurately model large-
scale designs with minimal designer effort

 Dogfood-ed: Actively used in multiple ongoing projects at Berkeley

* Compiler automates the partitioning process
* Ensures functional correctness
e Partitioning flexibility
 Performance optimization knobs
 Minimal code required for use

* Flexible & accessible: Cloud & on-premises FPGA support

@ Berkeley Architecture Research

36

o

Simulating non-Chipyard-based SoCs

What about your own non-Chipyard design?
* |solated testing of single RTL component

* Unique SoC top-level specific to your needs

* Other unique usages

FireSim now supports this!

* Use FireSim like Verilator/VCS
® FireSimis now a library decoupled from top-level

* Cleaner API for target-specific bridges + harnesses
* Use modern Chisel (and/or older Chisel versions)

v2.0 release coming soon!
* New docs on library usage + using new FPGAs
* Examples on non-SoC top-levels

@ Berkeley Architecture Research

A Using FireSim without Chipyard OF

Using FireSim without Chipyard
FireSim Is now standalone allowing (1) FreSim developers to test the repository without Chipyard
2) dowing noo-Chipyard top-devel projects 10 insegrate FireSim 34 a library. Weo will Sscuns

option [2) in ths section

A non-Chipyard top-level project serves as the tarpet which FireSim will simulate. it must provide 2

few items

* A Chisel top-devel “hamess” to connect FireSim Bridges to drive things ke the clock and reset

o A series of Make fragments to confipure the FireSim bulld system
For the remainder of this section we will use Chigyard a3 an example of how 10 integrate FireSim

Into a top-level project. In the future, we will provide a simplihied example non-Chipyard top-leved

Setup that uiers can reference.

Top-Level Harness

An example of 3 FireSim top-level harmess s in

10 drive system clocks. Then the
wecific beidges (0. the FASED DRAM model of

3 UART bridge for examgiel

C++ Driver Top

Next, you need (o provide a top-Jevel Co v driver such 2
$ICY_DIR}generatons/feechip m_top cc. This indicates how the
Bridges 1hondd be run. 3ed when

Make fragments

37

Learn More:
Web: https://fires.im

o I:i reSi m Docs: https://docs.fires.im

GitHub: https://github.com/firesim/firesim

Mailing List:
Joint h e https://groups.google.com/forum/#!forum/firesim

- @firesimproject

community!

Email: joonho.whangbo@berkeley.edu

Questions?

The information, data, or work presented herein was funded in part by the Advanced
Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award
Number DE-AR0000849, by DARPA, Award Number HR0011-12-2-0016, and by NSF
CCRI ENS Chipyard Award #2016662. Research was also partially funded by
SLICE/ADEPT Lab industrial sponsors and affiliates Amazon, Apple, Google, Intel,
Qualcomm, and Western Digital, and RISE Lab sponsor Amazon Web Services. The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

@ Berkeley Architecture Research

https://fires.im/
https://docs.fires.im/
https://github.com/firesim/firesim
https://groups.google.com/forum/
https://twitter.com/firesimproject
mailto:abe.gonzalez@eecs.berkeley.edu

	Slide 1: FireSim Updates – FireAxe Multi FPGA FireSim Support
	Slide 2: Large designs don’t fit on one FPGA
	Slide 3: Solution - Partition the design onto multiple FPGAs
	Slide 4: FireRipper: FireAxe’s compiler
	Slide 5: Boundary analysis & comm. collateral generation
	Slide 6: LI-BDN – target design to model
	Slide 7: LI-BDN – decouple the notion of time
	Slide 8: LI-BDN – decouple the notion of time
	Slide 9: LI-BDN – decouple the notion of time
	Slide 10: LI-BDN – decouple the notion of time
	Slide 11: LI-BDN – decouple the notion of time
	Slide 12: Boundary analysis – Comb. Logic
	Slide 13: Boundary analysis – Comb. Logic
	Slide 14: Boundary analysis – Comb. Logic
	Slide 15: Boundary analysis – Comb. Logic
	Slide 16: Boundary analysis – Comb. Logic
	Slide 17: Preventing deadlocks by splitting the channels
	Slide 18: Preventing deadlocks by splitting the channels
	Slide 19: Preventing deadlocks by splitting the channels
	Slide 20: Case Study: Partitioning a large OoO Core
	Slide 21: Case Study: Partitioning a large OoO Core
	Slide 22: Optional partitioning optimizations
	Slide 23: Optional partitioning optimizations
	Slide 24: Optional partitioning optimizations
	Slide 25: Optional partitioning optimizations
	Slide 26: Optional partitioning optimizations
	Slide 27: Partitioning & FPGA resource opt. synergy
	Slide 28: Partitioning & FPGA resource opt. synergy
	Slide 29: Partitioning & FPGA resource opt. synergy
	Slide 30: Partitioning & FPGA resource opt. synergy
	Slide 31: Supported FPGA platforms
	Slide 32: Performance characteristics – 2 FPGA on-premises
	Slide 33: Performance Characteristics
	Slide 34: Case studies
	Slide 35: Extensive document support
	Slide 36: Conclusion
	Slide 37: Simulating non-Chipyard-based SoCs
	Slide 38

