Fast and Etfortless
FPGA-accelerated

. : Hardware Simulation with
é I:l reS| m On-Prem and Cloud

Flexibility

https://fires.im
YW @firesimproject

Speaker: Abe Gonzalez

;) Berkeley Architecture Research

The architect/chip-developer’s design flow

1. High-level Simulation
2. Write RTL + Software, plug into your favorite ecosystem (e.g. Chipyard)
3. Co-design in software RTL sim (e.g. Verilator, VCS, etc.)

* Run microbenchmarks

4. Co-design in FPGA-accelerated simulation
* Boot an OS and run the complete software stack,
obtain realistic performance measurements

5. Tapeout - Chip

* Boot OS and run applications, but no more opportunity for co-design

Berkeley Architecture Research 2

The architect/chip-developer’s design flow

1. High-level Simulation
2. Write RTL + Software, plug into your favorite ecosystem (e.g. Chipyard)

3. Co-design in software RTL sim (e.g. Verilator, VCS, etc.)
* Run microbenchmarks

4. Co-design in FPGA-accelerated simulation

* Boot an OS and run the complete software stack, é I:l reS| | l |

obtain realistic performance measurements

5. Tapeout - Chip

* Boot OS and run applications, but no more opportunity for co-design

Berkeley Architecture Research 3

What about FPGA prototyping?

Taped-out SoC

n Rocket
m Core

Rocket
DRAM Core

Rocket
100nS Core

stency SoC RTL

— taped-out
@1 GHz

SoC sees 100 cycle DRAM latency
Berkeley Architecture Research

DRAM

100ns
latency

FPGA Prototype of SoC
Rocket
Core
Rocket
Core
Rocket
Core

R ocket SoC RTL
— on FPGA

@100 MHz

Y

~ ~
[i =l B
(w] -— (w] -—

,_
=

=
O

—
=

[
O

SoC sees 10 cycle DRAM latency

Incorrect by a factor of 10!

Difficulties with FPGA Prototypes

In an FPGA prototype:
* Every FPGA clock executes one cycle of the simulated target

* Performance of FPGA-attached resources is exposed to the
simulated world, e.g. DRAM, SD Card, UART, Ethernet, etc.
This leads to three problems:

1) Incorrect performance modeling: FPGA resources probably not an
accurate representation of target system
a) E.g., DRAM performance off by 10x on previous slide

2) Simulations are non-deterministic
3) Different host FPGAs produce different simulation results

Berkeley Architecture Research 5

Want HW simulators that:

Are as fast as silicon

Are as detailed as silicon

Have all the benefits of SW-based simulators
Are low-cost

Our Thesis:

* FPGAs are the only viable basis technology
— Build FPGA-accelerated simulators with
SW-like flexibility using an open-source tool

Berkeley Architecture Research

How? Useful Trends Throughout the Stack

Open ISA Open, Silicon-Proven
. SoC Implementations

CHISEeU

High-Productivity —
Hardware Design
Language & IR

%?RTL

GE% Berkeley Architecture Research

+ On Premise FPGAs

FireSim at 35,000 feet

* Open-source, fast, automatic, deterministic FPGA-accelerated
hardware simulation for pre-silicon verification and performance
validation

* Ingests:

* Your RTL design: FIRRTL (Chisel), blackbox Verilog
e Or Chipyard-generated designs with Rocket Chip, BOOM, NVDLA, PicoRV32, and more

* HW and/or SW 10 models (e.g. UART, Ethernet, DRAM, etc.)
* Workload descriptions

* Produces: Fast, cycle-exact simulation of your design + models around
it
* Automatically deployed to on-prem or cloud FPGAs
e E.g., Xilinx Alveo or AWS EC2 F1

Berkeley Architecture Research 8

Three Distinguishing Features of FireSim

1) Not FPGA prototypes, rather FPGA-accelerated simulators

* Automatic transformation of RTL designs into FPGA-accelerated
simulators

* Enables new debugging, resource optimization, and profiling
capabilities
2) Flexible scaling from on-prem to cloud FPGAs

* Scale easily from one or more on-prem FPGAs to massively parallel
simulations on elastic supply of cloud FPGAs

e Standardized host platforms = easy to collaborate with other
researchers and perform artifact evaluation

* Heavy automation to hide FPGA complexity, regardless of on-prem
or cloud platform

3) Open-source (https://fires.im)

Berkeley Architecture Research 9

https://fires.im/

Separating Target and Host

Target: the machine under Host: the machine executing
simulation (hosting) the simulation

Physical
DRAM

RTL DRAM

FPGA
Fabric

taped-out 100ns
1 GHZ latency

100ns
latency

Closed simulation world.

Berkeley Architecture Research .

Separating Target and Host

Target: the machine under Host: the machine executing
simulation (hosting) the simulation

RTL DRAM

taped-out 100ns
1 GHZ latency

Mem
Channel
CPU

Core

CPU
Core

100ns
latency

DRAM

Multiprocessor

Closed simulation world.

Berkeley Architecture Research .

FireSim Generates FPGA-Hosted Simulators
Core Core DRAM

VERILATOR CPU CPU
Core Core 100ns
latency
RTL DRAM Multiprocessor

taped-out § 10one

latency
1 G H z Physical
é DRAM
R FPGA [~
@S//?? Fabric 100ns
latency
Berkeley Architecture Research 12

Host Decoupling in FireSim: Transforming the Target

1) Convert RTL into a latency-insensitive [1] model using FIRRTL transform

p A

FASED[2]
DRAM

RTL Design Timing
Model
(4 GB)

DDR3
RTL Design DRAM

(4 GB)

L N

2) Generate FPGA-hosted model for DRAM [2] (think DRAMSim on an FPGA)
3) Generate queues (token channels) to connect the target models

[1] Theory of Latency Insensitive Design, Carloni et al, also see: RAMP
[2] FASED: FPGA-accelerated Simulation and Evaluation of DRAM, Biancolin et al 13

Eri Berkeley Architecture Research

Host Decoupling in FireSim: Mapping to the FPGA

FASED
DRAM

Timing

DRAM
Model Mem
RTL Design _

100 I;l'?eonncs
cycle Y

latency

<- Resp Queue Physical

Req Queue ->

FPGA Fabric

SoC sees realistic DRAM latency

Berkeley Architecture Research .

Benefits of Host Decoupling on FPGAs

Simulations will now:
* Execute deterministically
* Produce identical results on different hosts (FPGAs & CPUs)

Decoupling enables support for:
1. SW co-simulation (e.g. block device, network models)
2. Simulating large targets over distributed hosts (ISCA ‘18, Top Picks ‘18)

3. Non-invasive debugging and instrumentation (FPL ‘18, ASPLOS ’20,
ASPLOS “23)

4. Multi-cycle resource optimizations (ICCAD ‘19)

Berkeley Architecture Research 15

What Can You Do With
FireSim?

g} Berkeley Architecture Research

Example use cases: Evaluating SoC Designs

e “Classical” Performance Measurement

e Run SPECint 2017 with full reference inputs on Rocket Chip in parallel on ~10 FPGAs within a day (e.g.,
in D. Biancolin, et. al., FASED, FPGA '19)

* Rapid Full-System Design Space Exploration
e Can rapidly sweep parameter space of a design with FireSim automation
» Data-parallel accelerators (Hwacha) and multi-core processors
* Complex software stacks (Linux, OpenMP, GraphMat, Caffe)

Tile 1 Tile 2

Hwacha Rocket RISC-V Hwacha
DCSR Software Partition Fa Master Sequencer Vector Application Processor 0 Vector Master Sequencer

. ctor
<, Relative Speedup - Loop Raking T T Accel. 1 Accel. 0 L3 L3
s, Vector Lane 1 Vector Lane 0 scalar : - 4 pinoec Vector Lane 0 Vector Lane 1 SoC FPGA Host Machine
“a Vector Execution | || | Vector Execution Floating Point Unit Scatar Vector Executi Vector i Configuration
Unit (VXU) Unit (VXU) (FPU) unit Unit (VXU) Unit (VXU)
q T Network
L1D$ L1I$ Controller

16 KB 16 KB
calar
xec.
-------------------- Uni Sococsces fessccscse -
e ¥ olte FozocySoce RocketRISC-V Wl Il (sxuy Il [F==22vzzz2] fp] | Ml | F22ivizzc Block Device
Fooooooizs Foooiocizs Soalar Application Processor 1 TooilIiiz foooiocizs Controller
Unit
sy v e TileLink Crossbar UART
ni Controller

DCSR Software Partition Factor DCSR Software Partition
solute Speedup - Packed-Stripmining Absolute Speedup - Log/
5 peedup pm - pe

Speedup

Simulation
Timing
Control

10
M Te—— - El

Network
Model

Speedup
owsG3Y

Normalized Normalized Normalized
up

[
»
=
—

T2L2C2048 T2L1C2048 T1L2C2048 TIL1C2048

N

Sp

s G
|]

-
..N\!
cuBEYY cw BEYR o w BLYY
- 5 —
4
P .
i

RoCC Floating Point Unit

- » Vector Memory Vector Memory [nterface (FPU) Vector Memory Vector Memory l Functional
g a2 Unit (VMU) Unit (VMU) 4KB 16 KB 16 KB Unit (VMU) Unit (VMU) Models

33 - Vi$ DDR Controller

.......... ICA ama-mnf.l:) E | Tilelink Crossbar I DRAM Model
| 512/1024/2048 KB L2$
ﬁ . | Peripherals (UART, Block Device, NIC) H TileLink Crossbar |
2 } Berkeley Architecture Research 17

L/

Example use cases: Evaluating SoC Designs

* Security:

* BOOM Spectre replication gt Snedre T
* A Gonzalez, et. al., Replicating and Mitigating Spectre Attacks on an Open Source RISC-V p &op
Microarchitecture, CARRV '19

* Keystone Enclave performance evaluation] BOOM Hardware Security Research
* D. Lee, et. al., Keystone, EuroSys 20

* Mitigating cache attacks

* G.Saileshwar, et. al., MIRAGE: Mitigating Cache Attacks with a Randomized Fully-Associative Cache,
USENIX Security ‘21

e Accelerator evaluation
e Accelerator Orchestration:

* Machine Learning (S. Kim, et. al., AURORA, MICRO 2023)

* Chisel-based accelerators:
* Machine learning (H. Genc, et. al., Gemmini, DAC 2021)
* Garbage collection (M. Maas, et. al., A Hardware Accelerator for Tracing Garbage Collection, ISCA '18)

* Integrating Verilog-based accelerators:

* NVDLA (F. Farshchi, et. al. Integrating NVIDIA Deep Learning Accelerator (NVDLA) with RISC-V SoC on
FireSim. EMC2 ‘19)

e HLS-based rapid prototyping (Q. Huang, et. al., Centrifuge, ICCAD ‘19)
* Scale-out accelerators

Integrating NVIDIA Deep Learning Accelerator

(NVDLA) with RISC-V

FPGA (Amazon EC2 F1)

* nanoPU NIC-CPU co-design (S. Ibanez, et. al., nanoPU, OSDI ‘21) R icianicds] |
* Protobuf Accelerator (S. Karandikar, et. al., A Hardware Accelerator for Protocol Buffers, MICRO “21. fehehi@ it e e ealay

MICRO-54 Distinguished Artifact Winner.)

e Compression Accelerators (S. Karandikar, et. al., CDPU: Co-designing Compression and Decompression =
Processing Units for Hyperscale Systems, ISCA ’23.) -

Berkeley Architecture Research

18

Example use cases: Debugging and Profiling SoC

Designs

» Debugging and Profiling on the FPGA O Edit on GitHub

* Debugging a Chisel design at FPGA-

Debugging and Profiling on the FPGA
speeds

A common issue with FPGA-prototyping is the difficulty involved in trying to debug and profile
systems once they are running on the FPGA. FireSim addresses these issues with a variety of tools
for introspecting on designs once you have a FireSim simulation running on an FPGA. This section

* Many FireSim debugging features:
Assertion synthesis, printf synthesis, ILA Debiiguing st s oTling e FrCA

2. Running FireSim Simulations g 5 <
NS SIEAM MY o Capturing RISC-V Instruction Traces with TracerV
3. Building Your Own Hardware Designs

i n S e rt i O n) et C o (FireSim FPGA Images) o Building a Design with TracerV

o Enabling Tracing at Runtime
o Selecting a Trace Output Format

* e.g. FireSim Debugging Docs

Workloads o Interpreting the Trace Result
Targets o Caveats
Debugging in Software o Assertion Synthesis: Catching RTL Assertions on the FPGA

B Debugging and Profiling on the FPGA o Enabling Assertion Synthesis

Capturing RISC-V Instruction Traces o Runtime Behavior

with TracerV o Related Publications

Assertion Synthesis: Catching RTL
Assertions on the FPGA o Printf Synthesis: Capturing RTL printf Calls when Running on the FPGA

Printf Synthesis: Capturing RTL

printf Calls when Running on the p
FPGA o Runtime Arguments

o Enabling Printf Synthesis

AutolLA: Simple Integrated Logic © Related Publications

gnabzegilaioesiion o AutolLA: Simple Integrated Logic Analyzer (ILA) Insertion

AutoCounter: Profiling with Out-of-
Band Performance Counter o Enabling AutolLA

Collection o Annotating Signals

TracerV + Flame Graphs: Profiling o Setting a ILA Depth
Software with 9ut—of-Band Flame o Using the ILA at Runtime
Graph Generation

Dromajo Co-simulation with BOOM o AutoCounter: Profiling with Out-of-Band Performance Counter Collection
designs
Chisel Interf:
Debugging a Hanging Simulator ° alits oy
o Enabling AutoCounter in Golden Gate

Non-Source Dependency Management . .
g v E o Rocket Chip Cover Functions

Supernode - Multiple Simulated SoCs

Berkeley ArChIteCtU re Resea rch ren o AutoCounter Runtime Parameters 19

o AutoCounter CSV Output Format
o Using TracerV Trigger with AutoCounter

Miscellaneous Tips

Example use cases: Debugg

Designs

ASSEILIVH DY HILHIESIS, “atliilig N L

Assertions on the FPGA
Printf Synthesis: Capturing RTL

* Debugging a Chisel design at FPGA-

AutolLA: Simple Integrated Logic
Analyzer (ILA) Insertion

S p e e d S AutoCounter: Profiling with Out-of-

Band Performance Counter
Collection

* Many FireSim debugging features: Eie o i

Dromajo Co-simulation with BOOM

Assertion synthesis, printf synthesis, ILA

Debugging a Hanging Simulator

I n S e r‘t I O n) etc . Non-Source Dependency Management

Supernode - Multiple Simulated SoCs
Per FPGA

e e.g. FireSim Debugging Docs

FireSim Asked Questions

(Experimental) Using On Premise
FPGAs

Overview & Philnsanhv

& Read the Docs

Berkeley Architecture Research

Profiling SoC

o Printf Synthesis: Capturing RTL printf Calls when Running on the FPGA

o Enabling Printf Synthesis
o Runtime Arguments
o Related Publications

o AutolLA: Simple Integrated Logic Analyzer (ILA) Insertion

o Enabling AutolLA

o Annotating Signals

o Setting a ILA Depth

o Using the ILA at Runtime

* AutoCounter: Profiling with Out-of-Band Performance Counter Collection

o Chisel Interface

o Enabling AutoCounter in Golden Gate

o Rocket Chip Cover Functions

o AutoCounter Runtime Parameters

o AutoCounter CSV Output Format

o Using TracerV Trigger with AutoCounter
o AutoCounter using Synthesizable Printfs
o Reset & Timing Considerations

o TracerV + Flame Graphs: Profiling Software with Out-of-Band Flame Graph Generation

o What are Flame Graphs?

o Prerequisites

o Enabling Flame Graph generation in config_runtime.yaml

o Producing DWARF information to supply to the TracerV driver
o Modifying your workload description

o Running a simulation

o Caveats

* Dromajo Co-simulation with BOOM designs

o Building a Design with Dromajo
o Running a FireSim Simulation
o Troubleshooting Dromajo Simulations with Meta-Simulations

* Debugging a Hanging Simulator

o Case 1: Target hang.

o Case 2: Simulator hang due to FPGA-side token starvation.
o Case 3: Simulator hang due to driver-side deadlock.

o Simulator Heartbeat PlusArgs

O Previous Next ©

20

Example use cases: Debugging and Profiling SoC

Designs
* Debugging a Chisel design at FPGA- 1O

B ROOM = Directed tests and a rand

S p ee d S An open-source out-of-order . verilatorVCS/FPGA sim A
reSIIIent IOW-VO|tage Operatlor = VCS for pOSt-gllpar SimUI EERPEER L RS [nvalid write back in ROB
o . . = = Speculative OOQ pipelin o h2btrattost
* Many FireSim debugging features: f
Assertion synthesis, printf synthesis, ILA (=)
Krste Asanovic, D?-\I/gi z:;lt;grss%r&‘l%n

insertion, Cosimulation, etc. o Risc Asire ——
° eg Flreslm Debugglng DOCS » Total cost: $2 (compilation) + 2 x $1.56 (simulation) = $5.12
* e.g. Fixing BOOM Bugs (D. Kim, et. al.,

DESSERT, FPL’18)

* Profiling a custom RISC-V SoC at

FPGA- d (' » y
. e.g.sl-lrzls/eSVVSCo-design of a networked RISC- /\ Flre Perf

V system (S. Karandikar, et. al., FirePerf,
ASPLOS 2020)

Berkeley Architecture Research 21

How-to-build a datacenter-scale
FireSim simulation

[1] S. Karandikar et. al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud.” ISCA 2018
[2] S. Karandikar et. al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud.” IEEE Micro Top Picks 2018

Berkeley Architecture Research 22

Mapping a datacenter simulation

DC simulation requires:
* Model hardware at scale, cycle-accurately
* Run real software

RTL and abstract SW model co-simulation

e Server Simulations
e Good fit for the FPGA
* We have tapeout-proven RTL: FAME-1
transform w/Golden-Gate

Network simulation

e Little parallelism in switch models (e.g. a
thread per port)

* Need to coordinate all the distributed server
simulations

e So use CPUs + host network

Berkeley Architecture Research

fl.l6xlarge

Host Ethernet (EC2 Network)
4

CPU

Switch Model

Se rver

23

Step 1: Server SoC in RTL

o
(O
| -
Q

-
Q.

-
Q

(el
| -
Q

-
i)

@)

' o o o o o ' o

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

Resource Util.
- < of an FPGA

Sim Rate
- N/A

Step 1: Server SoC in RTL

}SOH 01 9|2d
] .

syulodpu3y wis julodpugy
'ydiiad Jayi0 wis JIN

s|eJaydiuiad 19U10

9109
19520}

910)
1900y

910)
19300y

910)
19500y

Step 2: FPGA Simulation of one server blade

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

- 16 GB DDR3
Resource Util.
- <% of an FPGA
- % Mem Chans
] EPGA Sim Rate

Fabric -~150 MHz
- ~40 MHz (netw)

)

Other Periph.
Sim Endpoints

PCle to Host

i
(L)
—
(]

i
o

=
(O]

(a1
S
(]

e
)

O

< 0608 ll z)2

NIC Sim
Endpoint

[

DRAM Model

Step 2: FPGA Simulation of one server blade

—
Pl
o .S
‘= O

“ o o

© a o | k%

Il |5 5| B

() = & (@]

o O 7| bu q) Q.)

E ——

: S S O
i)
= .
S5 U —
O o
= af
7 V)

DRAM Model | /e

Step 3: FPGA Simulation of 4 server blades

Modeled System

Cost: Server - 4 Server Blades
$0.49 per hour o S Blade - 16 Cores
: Simulation _ 64 GB DDR3
(spot)
Resource Util.
-< 1 FPGA
$1 .65 per hour Server Server -4/4 Mem Chans
(on-demand) Blade Blade Sim Rate
Simulation g Simulation _~14.3 MH3z

(netw)

Step 3: FPGA Simulation of 4 server blades

[POIN INVHA -

FPGA
4 Sims)

Simulation F P G A

Server
Blade
Simulation

igey
9dd

Server
Blade
Simulation

Step 4: Simulating a 32 node rack

Modeled System
- 32 Server Blades

- 128 Cores
oaot -512 GB DDR3
o (oo - 32 Port ToR
hour (spot) Switch
$13.20 per Hostinstance L 1o Switch Model I %Eg Gb/s, 2us
hour (on- Resource Util.
demand) - 8 FPGAs =

- Ix f1.16xlarge

Sim Rate

-~10.7 MHz

(netw)

Step 4: Simulating a 32 node rack

rrGa | rrea JIIE-- 1 FPGA
(4 Sims) § (4 Sims) (4 Sims)

Host Instance CPU: ToR SW|tch Model
ERENR [l N [N E R RN

FPGA FPGA FPGA FPGA
(4 Sims) § (4 Sims) § (4 Sims) § (4 Sims)

Step 5: Simulating a 256 node “"aggregation pou

Rack Rack

[] []
Aggregation Switch

[] L] []

|
Host U: T odel
FPGA FPGA FPGA FPGA
(4 Sims) § (4 Sims) § (4 Sims) § (4 Sims)

JI

Modeled System

- 256 Server Blades
- 1024 Cores

-4 TB DDR3

-8 ToRs, 1 Aggr

- 200 Gb/s, 2us
links

Resource Util.

- 64 FPGAs =

- 8x f1.16xlarge
- Ix m4.16xlarge
Sim Rate

-~9 MHz (netw)

Step 5: Simulating a 256 node "aggregation pod”

Aggregatlon SW|tch

FPGA [FPGA __E
(4 Sims) § (4 Sim ims
FPGA | FPGA | FPGA [FPGA
(4 Sims) § (4 Sims) § (4 Sims) § (4 Sims)

Step 6: Simulating a 1024 node datacenter

Aggregation Pod

| 45w EE
Rack Rack Rack
FPGA FPGA
i (4 Sims) | (4 Sims) i

Root Switch

Aggregation Pod | Aggregation Pod

Modeled System
- 1024 Servers

- 4096 Cores

-16 TB DDR3

- 32 ToRs, 4 Aggr,
1 Root

- 200 Gb/s, 2us
links

Resource Util.

- 256 FPGAs =

- 32x f1.16xlarge
- 5x m4.16xlarge
Sim Rate

-~6.6 MHz (netw)

Step 6: Simulating a 1024 node datacenter

Modeled System
- 1024 Servers

C
Harnesses millions of dollars of FPGAs : ;[5253

to simulate 1024 nodes cycle-exactly DRs, 4 Aggr,
with a cycle-accurate network simulation and
global synchronization

at a cost-to-user of only 100s of dollars/hour rPCgAUt”-
S =

- 32x f1.16xlarge
- 5x m4.16xlarge
Sim Rate

-~6.6 MHz (netw)

b/s, 2us

Aggregation Pod | Aggregation Pod

New Features!

Berkeley Architecture Research

Supports larger designs with FireAxe

FPGA 1 FPGA 2 FPGA 3 daadll ° FireAxe now upstreamed

CHCEHCECECHEBCICEHNCENCECEBCHEBCIECENCENCHENCECEBCI CECEMCECEIMCMC)
0 A HHE °° A | ° * (J. Whangbo, et. al., FireAxe, ISCA
eeeeeeeeeeee cllclcecBclcMecl clcMcelclc e 2024)

EEEEEEEEEEEEEEEEEEEEEE RN * Supports automatic partitioning of
designs onto multiple FPGAs

- oA — * Multiple partition modes and
2% optimizations while being cycle-
T | exact
UART || control Bus
* Example use cases
CLINT * Partitioning extremely large BOOM

out-of-order core with 2x FPGAs
* Partitioning 24 BOOM Core SoC
with 5x FPGAs

Berkeley Architecture Research .

Simulating non-Chipyard-based SoCs

What about your own non-Chipyard design?
* |solated testing of single RTL component

* Unique SoC top-level specific to your needs

* Other unique usages

FireSim now supports this!

* Use FireSim like Verilator/VCS
® FireSimis now a library decoupled from top-level

* Cleaner API for target-specific bridges + harnesses
* Use modern Chisel (and/or older Chisel versions)

New release coming soon!
* New docs on library usage
* Examples on non-SoC top-levels

@ Berkeley Architecture Research

FireSim

—Searrh docs

FireSim Basics

Background/Terminology

AWS EC2 F1 System Setup
Local FPGA System Setup

AWS EC2 F1 Getting Started Guide

Xilinx Alveo U200 XDMA-based
Getting Started Guide

Xilinx Alveo U250 XDMA-based

Getting Started Guide

Xilinx Alveo U280 XDMA-based
Getting Started Guide

Xilinx VCU118 XDMA-based Getting
Started Guide

RHS Research Nitefury Il XDMA-based
Getting Started Guide

(Experimental) Xilinx Alveo U250 Vitis-
based Getting Started Guide

Manager Usage (the firesin command)
Workloads

Targets

Debugging in Software

Debugging and Profiling on the FPGA

Non-Source Dependency Management

@ / Using FireSim without Chipyard © Edit on GitHub

Using FireSim without Chipyard

FireSim is now standalone allowing (1) FireSim developers to test the repository without Chipyard
and (2) allowing non-Chipyard top-level projects to integrate FireSim as a library. We will discuss
option (2) in this section.

A non-Chipyard top-level project serves as the target which FireSim will simulate. It must provide a
few items:

« A Chisel top-level “harness” to connect FireSim bridges to drive things like the clock and reset.
* Aseries of Make fragments to configure the FireSim build system.

For the remainder of this section we will use Chipyard as an example of how to integrate FireSim
into a top-level project. In the future, we will provide a simplified example non-Chipyard top-level
setup that users can reference.

Top-Level Harness

An example of a FireSim top-level harness is in
${CY_DIR}/generators/firechip/chip/src/main/scala/FireSim.scala. While there are alot of extra
Chipyard specific features, the main focus should be on adding a ResetPulseBridge to drive the
top-level reset of the system, and adding a RationalClockBridge to drive system clocks. Then the
harness can choose to instantiate any other target-specific bridges (i.e. the FASED DRAM model or
a UART bridge for example).

C++ Driver Top

Next, you need to provide a top-level C++ driver such as
${CY_DIR}/generators/firechip/chip/src/main/cc/firesim/firesim_top.cc. This indicates how the
bridges should be run, and when.

Make fragments

38

Conclusion

Berkeley Architecture Research

Productive Open-Source FPGA Simulation

e oithub.com/firesim/firesim, BSD Licensed

* An “easy” button for fast, FPGA-accelerated full-
system simulation

* Plug in your own RTL designs, your own HW/SW models \ /

* One-click: Parallel FPGA builds, Simulation run/result collection,
building target software

e Scales to a variety of use cases:
* Networked (performance depends on scale)
* Non-networked (150+ MHz), limited by your budget

e firesimcommand line program
e Like docker or vagrant, but for FPGA sims

* User doesn’t need to care about distributed magic happening Y
behind the scenes o

$

Berkeley Architecture Research FireSim Developer Environment 40

https://github.com/firesim/firesim

Productive Open-Source FPGA Simulation

e Scripts can call firesimto fully automate
distributed FPGA sim $ cd fsim/deploy/workloads

* Reproducibility: included scripts to reproduce ISCA 2018 results K- /run—a]_]_ .sh

e e.g. scripts to automatically run SPECInt2017 with full reference
inputs in =1 day

* Many others included

» Several user papers have gone through artifact evaluation using
FireSim (nanoPU, FirePerf, Protobuf accel., MoCA, Simulator
Independent Coverage, etc.)

e 200+ pages of documentation: https://docs.fires.im =

&
2000

 AWS provides grants for researchers:
https://aws.amazon.com/grants/ T e o

»»»»

* Xilinx University Program provides FPGA donations

for university researchers:
https://www.xilinx.com/support/university.html

Berkeley Architecture Research ;

https://docs.fires.im/
https://aws.amazon.com/grants/
https://www.xilinx.com/support/university.html

Join the FireSim Community!:

Open-source users and industrial users

* More than 200 mailing list members and e Companies publicly announced
850 unique cloners per-week : . e
using FireSim

* Projects with public FireSim support

Gemmini + AURORA

NVIDIA Deep Learning Accelerator (NVDLA)

* NVIDIA Blogbr)ost:
https://devblogs.nvidia.com/nvdla/

 BOOM Spectre replication/mitigation
* Protobuf/Compression Accelerator
* Too many to list here!

* Chipyard * Esperanto Maxion ET

y FC‘OCkft”CT_p Mo e Intensivate IntenCore

. BooOM TP .+ SiFive validation paper @ VLSI’20

* Hwacha Vector Accelerator * Galois and Lockheed Martin (DARPA
e Keystone Secure Enclave SSITH/FETT)

Berkeley Architecture Research Esperanto announcement at RISC-V Summit 2018 .

https://devblogs.nvidia.com/nvdla/

FireSim in DARPA FETT

 DARPA SSITH: Building hardware defenses
to address common software vulnerabilities

« DARPA FETT: How good are the defenses

built in SSITH?
* Multiple designs hosted for attack in FireSim [1]

e “Morpheus Il: A RISC-V Security Extension
for Protecting Vulnerable Software and

Hardware”
* Developed by UT Austin, U Mich., Agita Labs
° HOSted on Flreslm for FETT [2] [1] K. Hopfer. Leveraging Amazon EC2 F1 Instances for Development and Red Teaming in
DARPA’s First-Ever Bug Bounty Program. AWS APN Blog. May 2021.
° Over 500 attaCke rs tried to break Morpheus ” [2] A. Harris, et. al., “Morpheus Il: A RISC-V Security Extension for Protecting Vulnerable

Software and Hardware”. In proceedings of the 2021 IEEE International Symposium on

defenses, Working for Iarge bug bounties. None Hardware Oriented Security and Trust (HOST), December 2021.
[3] T. Austin,, et. al., “Morpheus II: A RISC-V Security Extension for Protecting Vulnerable

Succeeded [3] Software and Hardware”. In HotChips 33, August 2021.
@ Berkeley Architecture Research 43

Join the FireSim Community!:

Academic Users and Awards

* ISCA “18: Maas et. al. HW-GC Accelerator (Berkeley) * Awards: FireSim ISCA "18 paper:
o + |EEE Micro Top Pick
* MICRO “18: Zhang et. al. “Composable Building Blocks to Open up - CACM Research Highlights Nominee from
Processor Design” (MIT) ISCA *18

« RTAS ‘20: Farshchi et. al. BRU (Kansas) * Awards: FireSim users:

+ ISCA 18 Maas et. al.:
* EuroSys ‘20: Lee et. al. Keystone (Berkeley) » IEEE Micro Top Pick

« MICRO ‘18 Zhang et. al.:
* OSDI 21: Ibanez et. al. nanoPU (Stanford) - IEEE Micro Top Pick

 MICRO ‘21 Gottschall et. al.:
MICRO-54 Best paper runner-up
e CCS ‘21: Ding et. al. “Hardware Support to Improve Fuzzing * MICRO ‘21 Karandikar et. al.:

Performance and Precision” (Georgia Tech) MICRO-54 Distinguished Artifact winner
IEEE Micro Top Pick Honorable Mention

* USENIX Security ‘21: Saileshwar et. al. MIRAGE (Georgia Tech)

* MICRO ’21: Karandikar et. al. “A Hardware Accelerator for Protocol « DAC 21 Genc et. al.:
« MICRO ‘23 Kim et. al.:
* MICRO ‘21: Gottschall et. al. TIP (NTNU) « |EEE Micro Top Pick

* ISCA 24 Whangbo et. al.:

* Over 20 additional user papers on the FireSim website: Distinguished Artifact winner

* https://fires.im/publications/#userpapers "

Join the FireSim Community!:
Academic Users and Awards

ISCA “18: Maas et. al. HW-GC Accelerator (Berkeley) * Awards: FireSim ISCA 18 paper:
‘ ‘ o « |EEE Micro Top Pick
MICRO “18: Za2 ; - ‘ TR i Nominee from

Processor De - . % .
WO fireSim has been used”™ in published work

Mekll from authors at over 20 academic and

0SDI ‘21: Iban industrial institutions
USENIX Securi

CCS ‘21: Din Al | |
Performance *actually used, not only cited Artifact winner

orable Mention
MICRO ’21: Karandikar et. al. . enc et. al.:

Buffers” (Berkeley/Google) MI&:R%A‘% ;0;1 Beit Plaper winner
. Im et. al.:

MICRO ‘21: Gottschall et. al. TIP (NTNU) « |EEE Micro Top Pick
* ISCA 24 Whangbo et. al.:
» Distinguished Artifact winner

Over 20 additional user papers on the FireSim website:

* https://fires.im/publications/#userpapers

Learn More:
Web: https://fires.im

é I:i reSi m Docs: https://docs.fires.im

GitHub: https://github.com/firesim/firesim

Mailing List:
https://groups.google.com/forum/#!forum/firesim

@firesimproject

Questions?

Email: abe.gonzalez@berkeley.edu

The information, data, or work presented herein was funded in part by the Advanced
Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award
Number DE-AR0000849, by DARPA, Award Number HR0011-12-2-0016, and by NSF
CCRI ENS Chipyard Award #2016662. Research was also partially funded by
SLICE/ADEPT Lab industrial sponsors and affiliates Amazon, Apple, Google, Intel,

Berkeley Architecture Research Qualcomm, and Western Digital, and RISE Lab sponsor Amazon Web Services. The
views and opinions of authors expressed herein do not necessarily state or reflect

those of the United States Government or any agency thereof.

https://fires.im/
https://docs.fires.im/
https://github.com/firesim/firesim
https://groups.google.com/forum/
https://twitter.com/firesimproject
mailto:abe.gonzalez@eecs.berkeley.edu

