
AuRORA Introduction

1

Seah Kim
UC Berkeley
seah@berkeley.edu

AuRORA: Virtualized Accelerator Orchestration for Multi-Tenant Workloads
Selected as One of “Top Picks from Computer Architecture Conferences”
Seah Kim, Jerry Zhao, Krste Asanovic, Borivoje Nikolic, Yakun Sophia Shao
International Symposium on Microarchitecture (MICRO), October 2023.

2

Pre-Fetch RTL Build

cd /root/chipyard/generators/sim/verilator

make CONFIG=TutorialGemminiReRoCCConfig

Background: Trends in Modern SoCs

More cores
● End of single-thread

performance scaling
● Many-core SoCs to

extract TLP

How to scalably architect
many-accelerator SoCs?

More accelerators
● More compute-bound

workloads require
acceleration

More applications
● Software stacks grow in

complexity
● Graphics/multimedia/AI

are pervasive

How to architect many-
accelerator SoCs?

3

End of single-thread performance scale -> multi-core architecture

Trends in Modern SoCs: Multi-Core

4

Multiple tasks share system resources

@ Edge @ Cloud

Trends in Modern SoCs: More Applications

5

To keep up with application that are becoming more demanding…

Trends in Modern SoCs: Multi-Accelerator

AMD AI Engine Technology
(https://www.xilinx.com/products/technology/ai-
engine.html) 6

https://www.xilinx.com/products/technology/ai-engine.html
https://www.xilinx.com/products/technology/ai-engine.html

Goal 1: Scalable to many-accelerator systems

Requirements:
Physical scalability

Many-accelerator integration
Virtual accelerator integration

Abstraction for user’s view of accelerator instances
???

7

Requirements for Accelerator Integration

. . .

. . .

Accel Accel

Accel Accel

Physical
accelerator
instances

User

Virtualized
Accelerator

PID
1

PID
2

PID
3

PID
4

Program physical accelerator resources
Request accelerator using physical ID (PID)

Issues under multi-tenancy
Programming burden
Resource conflict

Hard to repartition resource frequently
Cause stall: Low utilization

Physical Accelerator Integration

PID
1

PID
2

PID
3

PID
4

Task
thread 1

Request # 3
(PID 1, 2, 3)

Task
thread 2

Request # 2
(PID 3, 4)

Conflict!
8

Provides abstraction between user’s view of accelerator and accelerator
instances

Enable scalable many-accelerator for multi-tenancy

Requirements …
Low latency
Minimize programming overhead

Virtual Accelerator Integration

Task
thread 1

Request
(target)

Task
thread 2

Virtualized
Accelerator

PID
1

PID
2

PID
3

PID
4

Task 1

Task 2

9

Request
(target)

10

Requirements for Accelerator Integration

Goal: Enable scalable many-accelerator for multi-tenant execution

Requirements:
Physical scalability
Virtual accelerator integration

Low latency
Minimal programming overhead

Interface: How accelerator interacts with host CPU and system

CPU Accelerator?

Existing Physical Accelerator Integration Methodologies

Tightly CPU-coupled:
Limited opcode space

Physically attached to CPU

opcode 0

CPU
AccelX

AccelYopcode 1

AccelZ

X

Limited accelerator per core

11

Existing Physical Accelerator Integration Methodologies

Physical design challenge

IFU EX

AccelY
AccelZ

MEM

AccelX

Congested!

Tightly CPU-coupled:
Limited opcode space

Physically attached to CPU

Limited accelerator per core

12

Scalability issue

Existing Physical Accelerator Integration Methodologies

Software complexity
Memory-mapped over interconnect

Setup accelerator IOMMU for
address translation

Access accelerator over system bus,
memory hierarchy

AccelCPU IOMMU

Setup PTW

13

Existing Physical Accelerator Integration Methodologies

Memory-mapped over interconnect
Setup accelerator IOMMU for
address translation

Access accelerator over system bus,
memory hierarchy

Latency overhead

Software complexity

14

Accel1CPU

CPU

CPU

Accel2

Accel3

Accel4
M

em
or

y
In

te
rc

on
ne

ct

Latency

Virtual integration difficulties

A full-stack system enabling scalable deployment and
virtualized integration of accelerators

AuRORA: Virtual Accelerator Integration and Orchestration

Enable physical disaggregation
Provides illusion of tight-coupling

Virtualized accelerator management

Enable acquiring many-accelerators

Low latency

15

♣

✔

♣
✔

✔: Virtualization
♣: Scalability

Enable programmable virtual interface✔

✔

Enable virtual to physical mapping✔

16

AuRORA: A ISA-agnostic full-stack methodology for accelerator integration

ReRoCC: An implementation of AuRORA targeting the existing RoCC interface for
RISC-V accelerators

AuRORA and ReRoCC

17

● RoCC interface helps attach accelerators to Rocket CPU
● RoCC accelerator follows standard instruction format

○ 4 opcodes for non-standard instructions
○ 2 source registers, 1 destination register can be passed to the accelerator

Tight-coupled example: RoCC

18

Background on Tightly-coupled RoCC Interface

1. CMD/RESP interface: CPU issues custom
instructions to accelerator

2. PTW access: Accelerator can access host PTW/TLBs
for virtual memory

3. L1D$ access: shared data cache
4. Bus access: direct access to coherent/incoherent

memory
Comparable to commercial core-IP custom extension
interfaces

Flexible interface with many existing open-source
accelerator implementations/resources

Strategy: Build off/improve RoCC, retain backwards
compatibility with existing work

Client:
Attaches to CPUs via RoCC
Forwards accelerator instructions
to acquired manager

AuRORA Microarchitectural Components

Manager:
Attaches to existing RoCC accelerators
Shadow thread architectural state
Eliminate need of user-/supervisor-
managed IOMMU

19

Manages communication
between Clients and Managers
Non-blocking

Protocol supports:
Client-manager synchronization
Maintenance of shadowed
architectural state on managers
Client-to-manager instruction
forwarding

Physical transport layer: network-
on-chip interconnect

AuRORA Hardware Messaging Protocol

20
Manager states

CPU CPU

Accel

Client 0 Client 1

Manager 0

Accel

Manager 1

Acquire
Request

Granted

Acquire
Request Rejected

Manages communication
between Clients and Managers
Non-blocking

Protocol supports:
Client-manager synchronization
Maintenance of shadowed
architectural state on managers
Client-to-manager instruction
forwarding

Physical transport layer: network-
on-chip interconnect

AuRORA Hardware Messaging Protocol

21

CPU CPU

Client 0 Client 1

Manager 0 Manager 1

Release
Request

Manager states

Accel Accel

Allows user thread to interact with HW in programmable fashion

Low-overhead: bounded by interconnect latency

AuRORA ISA Extensions

AuRORA PseudoInst.

rr_acquire

rr_assign

rr_release

rr_fence

22

AuRORA ISA Extensions

rr_acquire
Maps physical accelerator to virtual accelerator index
Return success status

rr_assign
Maps virtual accelerator to available opcode on its
architectural thread
Allows an architectural thread to acquire more
accelerators than the available opcode space

23

Client 0

Manager 0

Acquire
Request

Granted

Backwards compatibility with accelerator SW
Invoked only before entry of DNN layer execution

Low overhead
Implements in user-space
No need to preempt during layer execution

Dynamically allocate resources for multi-tenant workload
Latency target-aware resource allocation

AuRORA Runtime

Dynamic score:
 ddl_score <- time_left_to_target / estimate_latency(# accel)

24

25

Flow Without AuRORA

Time
Deadline

Resource
request

: Accelerator migrate

: Accelerator request

Physical

: Accelerator

: Scheduling granularity
 (layer)

26

Flow Without AuRORA

Time
Deadline

Physical

: Accelerator migrate

: Accelerator request: Accelerator

: Scheduling granularity
 (layer)

27

Flow Without AuRORA

Time
Deadline

Violation!

: Accelerator migrate

: Accelerator request: Accelerator

: Scheduling granularity
 (layer)

Physical

28

AuRORA Runtime - Compute

Time
Deadline

: Accelerator

: Scheduling granularity
 (layer)

: Accelerator release

Virtual

29

AuRORA Runtime - Compute

Time

: Accelerator

: Scheduling granularity
 (layer)

Acquire

Acquire

Deadline

: Accelerator release

Virtual

30

AuRORA: A full-stack hardware/software integration approach to support
virtualized accelerator orchestration

AuRORA enables scalable many-accelerator system for multi-tenant execution

Full-system evaluation using real SoC, real RISC-V cores and accelerators

Performance/area evaluation using physically realizable RTL

Open-sourced, integrated to Chipyard SoC design framework

Summary

Open-sourced: https://github.com/ucb-bar/AuRORA

