) Berkeley Architecture Research é 'I:::;: E

AuRORA Introduction
& Berkaley £ JCHIP
seah@berkeley.edu

i GEMMINI

AuRORA: Virtualized Accelerator Orchestration for Multi-Tenant Workloads
Selected as One of “Top Picks from Computer Architecture Conferences”
Seah Kim, Jerry Zhao, Krste Asanovic, Borivoje Nikolic, Yakun Sophia Shao
International Symposium on Microarchitecture (MICRO), October 2023.

Pre-Fetch RTL Build

cd [root/chipyard/generators/sim/verilator

make CONFIG=TutorialGgemminiReRoCCConfig

Background: Trends in Modern SoCs

Accel Accel

How to architect many-

__accelerator SoCs? Accel—Acce
More accel _) e applications
e More compute-bd N & Softwarg stacks grow in
workloads require complexity
acceleration e Graphics/multimedia/Al
are pervasive

Trends in Modern SoCs: Multi-Core

End of single-thread performance scale -> multi-core architecture

48 Years of Microprocessor Trend Data

|
107 [~ Transistors (thousands)
108 [~
Single-Thread
10° Performance
) (SpecINT x 109)
A
10 ' B -
AL Aif Fre MH
el quency (MHz)
10° - ako oMol
A * Typical Power (Watts)
10° “ e e --. umber of
e S v o ,
L -~ -] v vv:'! ¥y Logical Cores
10 Y - - v
Ve - v v VeV vwv
100 |- ; * T . 3 ee e e cenem
|
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

Trends in Modern SoCs: More Applications

Multiple tasks share system resources

A 1

§ o G CF

Clients

. , Motion Trajecto ‘ ‘ ‘
Detections Tracking Prediction Plajmningjy

\ 1/
L3

Cloud Accelerator

Autonomous Vehicle

@ Edge

@ Cloud

Trends in Modern SoCs: Multi-Accelerator

To keep up with application that are becoming more demanding...

Al Engine Tile

ISA-Based VLIW
Vector Processor

w=lp- Memory Interface

_ Flexible Interconnect | w==p Stream Interface
AMD Al Engine Technology —==fp Cascade Interface
(https://www.xilinx.com/products/technology/ai-

engine.html)

https://www.xilinx.com/products/technology/ai-engine.html
https://www.xilinx.com/products/technology/ai-engine.html

Requirements for Accelerator Integration

Goal 1: Scalable to many-accelerator systems
Accel Accel| [
Requirements:
Physical scalability
Accel Acce| [
Many-accelerator integration
Virtual accelerator integration | . |
Abstraction for user’s view of accelerator instances User
2?7 _
7
Physical PID | | PID
ysica 1 2 . :
accelerator Xlrtulallz?d
instances F’éD F’"lD ceelerator

Physical Accelerator Integration

Program physical accelerator resources
Request accelerator using physical ID (PID)

Issues under multi-tenancy

Programming burden thI::g 1
Resource conflict
Hard to repartition I.‘e.SOl.Jrce frequently Request # 3
Cause stall: Low utilization (PID 1, 2, 3)

Task
thread 2

Request # 2
(PID 3, 4)

PID
1

PID

PID

PID
3

Conflict!

Virtual Accelerator Integration

Provides abstraction between user’s view of accelerator and accelerator
instances

Enable scalable many-accelerator for multi-tenancy

Requirements ...

Task Task
Low latency thread 1 thread 2
Minimize programming overhead
Request Request
target target
Task2 (target) (target)
PID ||| PID
Task 1 |—— L= Virtualized
po | | PID Accelerator
3 4

Requirements for Accelerator Integration

Goal: Enable scalable many-accelerator for multi-tenant execution

Requirements:

Physical scalability
Virtual accelerator integration
Low latency

Minimal programming overhead

CPU

R
~

Accelerator

---r---

I
|
\

Interface: How accelerator interacts with host CPU and system

10

Existing Physical Accelerator Integration Methodologies

opcode 0

»| AccelX

Accel «<>CPU <> Accel CPU

$ $ $ X opcode 1: AccelY

SoC Interconnect

AccelZ

Tightly CPU-coupled:
Limited opcode space —> Limited accelerator per core

Physically attached to CPU

Existing Physical Accelerator Integration Methodologies

Accel «<>CPU <> Accel

v

—

SoC Interconnect

Tightly CPU-coupled:
Limited opcode space

Physically attached to CPU

Congested!

— Limited accelerator per core

—> Physical design challenge

Scalability issue

12

Existing Physical Accelerator Integration Methodologies

Setup PTW

CPU

— [IOMMU Accel

Software complexity <=

CPU CPU Accel Accel

v v v $

SoC Interconnect

Memory-mapped over interconnect
Setup accelerator OMMU for
address translation

Access accelerator over system bus,
memory hierarchy

13

Existing Physical Accelerator Integration Methodologies

Latency

Accel1

CPU 3 CPU CPU Accel Accel
2 c Accel2
CPU £ 5 v v 3 0
=) Accel3 SoC Interconnect
C
CPU Accel4

Memory-mapped over interconnect
Software complexity <= Setup accelerator IOMMU for

address translation

Latency overhead <& Access accelerator over system bus,
memory hierarchy

Virtual integration difficulties

14

AuRORA: Virtual Accelerator Integration and Orchestration

Software
A

ReRoCC J
Interface

—

Hardware

A full-stack system enabling scalable deployment and

virtualized integration of accelerators

Runtime
System

Tasks | =| #include
Application 1 < aurora.h >
Application 2 3
Application 3 Map

1

ISA
Extensions

1

Hardware
Messaging
Protocol

1

rerocc_acquire
rerocc_release

acquire / release

Accelerators

rd, rsl, rs2
rd, rsl

Micro-
architecture

Client: ~ > éManageri

""""" acknowledge

CPU<«—>Client Manager <> Accel
A A
v $ $ v

SoC Interconnect

V: Virtualization
&: Scalability

V' Virtualized accelerator management

& Enable acquiring many-accelerators
V' Enable programmable virtual interface

V' Low latency
V' Enable virtual to physical mapping

& Enable physical disaggregation
V' Provides illusion of tight-coupling

15

AURORA and ReRoCC

AUuRORA: A ISA-agnostic full-stack methodology for accelerator integration

ReRoCC: An implementation of AURORA targeting the existing RoCC interface for
RISC-V accelerators

16

Tight-coupled example: RoCC

e RoCC interface helps attach accelerators to Rocket CPU

e RoCC accelerator follows standard instruction format
o 4 opcodes for non-standard instructions
o 2 source registers, 1 destination register can be passed to the accelerator

31 25 24 20 19 1514 13 12 11 76 0
funct? rs2 rsl xd | xsl | xs2 rd opcode
7 5 5 1 1 1 5 7
roccinst[6:0] src2 srcl dest custom-0/1/2/3

17

Background on Tightly-coupled RoCC Interface

CPU Tile

CPU

®

D —

TLBs | | PTW <@+Accelerator

L11$ L1D$ «—>

®

RoCC

0o
Y

System Interconnect

1.

2,

3.
4.

CMD/RESP interface: CPU issues custom
instructions to accelerator

PTW access: Accelerator can access host PTW/TLBs
for virtual memory

L1D$ access: shared data cache

Bus access: direct access to coherent/incoherent
memory

Comparable to commercial core-IP custom extension
interfaces

Flexible interface with many existing open-source
accelerator implementations/resources

Strategy: Build off/improve RoCC, retain backwards
compatibility with existing work

18

AUuRORA Microarchitectural Components

\ 4 \ 4
SoC Interconnect (Configurable)
Client: Manager:
Attaches to CPUs via RoCC Attaches to existing RoCC accelerators
Forwards accelerator instructions Shadow thread architectural state

to acquired manager Eliminate need of user-/supervisor-

managed IOMMU

19

AuRORA Hardware Messaging Protocol

Manages communication
between Clients and Managers

Non-blocking

Protocol supports:
Client-manager synchronization
Maintenance of shadowed
architectural state on managers
Client-to-manager instruction
forwarding

Physical transport layer: network-
on-chip interconnect

CPU
|
Client 0
1 Acquire
Request
Acquire Granted
Request
Manager O
l
Accel
.................. [61 cqwre

CPU
|

Client 1

Rejected

Manager 1

|

Accel

AuRORA Hardware Messaging Protocol

Manages communication
between Clients and Managers

Non-blocking

Protocol supports:
Client-manager synchronization
Maintenance of shadowed
architectural state on managers
Client-to-manager instruction
forwarding

Physical transport layer: network-
on-chip interconnect

CPU
|
Client 0

Release
Request

\ 4

Manager 0

--

CPU
|

Client 1

Manager 1

Accel

_— o

AUuRORA ISA Extensions

AUuRORA Pseudolnst.

rr_acquire

|
|
rr_assign l
J

rr_release

rr_fence

Allows user thread to interact with HW in programmable fashion

Low-overhead: bounded by interconnect latency

22

AUuRORA ISA Extensions

rr_acquire
Maps physical accelerator to virtual accelerator index

Return success status

rr_assign
Maps virtual accelerator to available opcode on its

architectural thread
Allows an architectural thread to acquire more

accelerators than the available opcode space

CPU

Client 0
A

Acquire Granted
Request

A 4

Manager O
|

Accel

23

AuRORA Runtime

Backwards compatibility with accelerator SW
Invoked only before entry of DNN layer execution

Low overhead
Implements in user-space
No need to preempt during layer execution

Dynamically allocate resources for multi-tenant workload
Latency target-aware resource allocation

Dynamic score:
ddl_score <- time_left_to_target / estimate_latency(# accel)

24

Flow Without AuURORA

: Scheduling granularity T : Accelerator migrate 4
(layer)
*
: Accelerator | 1 Accelerator request
|
X2
Task 1
X 2 . Resource
, ' request !
Physical Task 2
X2
Task 3
Time

Deadline 25

Flow Without AuURORA

: Scheduling granularity T : Accelerator migrate 4
(layer)
*
: Accelerator | 1 Accelerator request
|
X2 X1
Task 1]
Migrate
X 2 l g X 4
Physical Task 2 I
X 2 MlgrateT X 1
Task 3

Deadline 26

Flow Without AuURORA

: Scheduling granularity

(layer)

Task 1

Physical Task2

: Accelerator

T : Accelerator migrate

-——

X2

A
X 2 i l
X 2

: Accelerator request

X 1

X3

X 2

Violation!

Deadline 27

AuRORA Runtime - Compute

: Scheduling granularity

(layer)
: Accelerator
X2
Task1 [
X2
Virtual Task2 |
X2

Task 3

\ : Accelerator release 1

Time ¢

Deadline 28

AuRORA Runtime - Compute

: Scheduling granularity \ : Accelerator release 1
(layer)

: Accelerator

Acquire
x21\ x 1 l X3

Task 1 I S
% 2 Acquiie 3 \ D
Virtual Task 2 []

X2 ‘\ X 1

Deadline 29

Summary

AuRORA: A full-stack hardware/software integration approach to support
virtualized accelerator orchestration

AuRORA enables scalable many-accelerator system for multi-tenant execution
Full-system evaluation using real SoC, real RISC-V cores and accelerators
Performance/area evaluation using physically realizable RTL

Open-sourced, integrated to Chipyard SoC design framework

Open-sourced: https://github.com/ucb-bar/AuRORA

