
Gemmini AuRORA Integration

1

Seah Kim
UC Berkeley
seah@berkeley.edu

2

View AuRORA SoC Configs

cd $MCYDIR/generators/chipyard/src/main/scala

vim configs/RoCCAcceleratorConfigs.scala

3

View AuRORA SoC Configs

cd $MCYDIR/generators/chipyard/src/main/scala

vim configs/RoCCAcceleratorConfigs.scala

Accel Accel Accel Accel

Tile0

Accel

Tile1 Tile2 Tile3 Tile4

Platform-level:
Assumes a global physical ID-space of up to 256 remotely-attached RoCC accelerators
Platform should encode the physical ID-space

ISA-level:

AuRORA Architectural Extensions

4

CSRs: rrcfg0 - rrcfgX
• State indicates which system-wide

physical accelerators are locked to
this thread

• Writes acquire/release shared
accelerators

• <100 bits of additional state

CSRs: rropc0 - rropc3
• Set which accelerator (cfg) should

receive instructions of this opcode
• Enables virtualization of the

opcode/accelerator space
• 16 bits of additional state

reserved acq mgr
63 9 8 7 0

55 1 8
reserved cfg

63 4 3 0

 60 4

rr_acquire, rr_release rr_set_opc

5

View ReRoCC Header

cd $MCYDIR/generators/aurora

vim aurora-sw/rerocc.h

6

Directly invoke accelerator
software stack

RoCC Programming Model
Code:

libaccel_execute_task(data);

7

To use a ReRoCC accelerator,
only need to wrap the accelerator
software with minimal additional
code

AuRORA + ReRoCC Programming Model
Code:
do {
 csr_write(CSR_RRCFG0, RRCFG_ACQ | 0x0);
} while (csr_read(CSR_RRCFG0) & !RRCFG_ACQ);

csr_write(CSR_OPC0, 0x0);

libaccel_execute_task(data);

csr_write(CSR_CFG0, 0x0);

Procedure:
1. Software should attempt to acquire an

accelerator from the system

1. Software should map a local opcode
to the accelerator

1. After acquisition, accelerator appears
to be architecturally part of the host
thread

1. Software should release the
accelerator to the system after
completion

AuRORA + ReRoCC Programming Model
Code:
do {
 write_csr(CSR_RRCFG0, RRCFG_ACQ | 0x0);
} while (read_csr(CSR_RRCFG0) & !RRCFG_ACQ);

csr_write(CSR_OPC0, 0x0);

libaccel_execute_task();

csr_write(CSR_CFG0, 0x0);

● Accelerator acquisition can happen in user mode
● Overhead is just interconnect latency to query the accelerator for

availability
○ O(10s) of cycles

● Threads which fail to acquire can sleep() to deschedule themselves

● Platforms can implement multiple homogeneous accelerators
○ Ex: 4 instances of accelX, 2 instances of accelY, etc.

● User threads can query to request any, or multiple available accelerators

8

Procedure:
1. Software should attempt to acquire an

accelerator from the system

2. Software should map a local opcode
to the accelerator

1. After acquisition, accelerator appears
to be architecturally part of the host
thread

1. Software should release the
accelerator to the system after
completion

AuRORA + ReRoCC Programming Model
Code:
do {
 write_csr(CSR_RRCFG0, RRCFG_ACQ | 0x0);
} while (read_csr(CSR_RRCFG0) & !RRCFG_ACQ);

write_csr(CSR_RROPC0, 0x0);

libaccel_execute_task();

csr_write(CSR_CFG0, 0x0);

● Fast, low-latency, just writing some CSR on the core
● Supporting more acquired accelerators than opcodes lets us get around

limited available opcode space

9

Procedure:
1. Software should attempt to acquire an

accelerator from the system

2. Software should map a local opcode
to the accelerator

3. After acquisition, accelerator appears
to be architecturally part of the host
thread

1. Software should release the
accelerator to the system after
completion

AuRORA + ReRoCC Programming Model
Code:
do {
 csr_write(CSR_RRCFG0, RRCFG_ACQ | 0x0);
} while (csr_read(CSR_RRCFG0) & !RRCFG_ACQ);

csr_write(CSR_RROPC0, 0x0);

libaccel_execute_task(data);

csr_write(CSR_CFG0, 0x0);● Unmodified accelerator kernels/libraries can be executed
● Architectural illusion of a unified system is maintained for accelerator

software

10

Procedure:
1. Software should attempt to acquire an

accelerator from the system

2. Software should map a local opcode
to the accelerator

3. After acquisition, accelerator appears
to be architecturally part of the host
thread

4. Software should release the
accelerator to the system after
completion

AuRORA + ReRoCC Programming Model
Code:
do {
 csr_write(CSR_RRCFG0, RRCFG_ACQ | 0x0);
} while (csr_read(CSR_RRCFG0) & !RRCFG_ACQ);

csr_write(CSR_RROPC0, CFG0);

libaccel_execute_task(data);

csr_write(CSR_RRCFG0, 0x0);

11

12

Pre-Run Test

cd $MCYDIR/generators/aurora

build workload
./build.sh

cd ../../sims/verilator
run test
make CONFIG=TutorialGemminiReRoCCConfig run-binary-hex
BINARY=../../generators/aurora/build/bareMetalC/tiled_matmul_ws_perf
-baremetal

13

View ReRoCC Header & Test

cd $MCYDIR/generators/aurora

vim aurora-sw/aurora.h
vim aurora-sw/gemmini_aurora.h
vim bareMetalC/tiled_matmul_ws_perf.c

A B Cx =

Division of matmul across two accelerators

14

Run Contention Test

cd $MCYDIR/generators/aurora

vim bareMetalC/mt_contention.c

build multi workload
./build_multi.sh

15

Run Contention Test

TutorialGemminiReRoCCConfig

CPU CPU

Accel

ReRoCC
Client Tile

Accel Accel AccelReRoCC
Manager Tile

: Acquired

: Request

Contention
-> reject

Contention
-> reject

16

Run Contention Test

cd $MCYDIR/sims/verilator

run test
make CONFIG=TutorialGemminiReRoCCConfig run-binary-hex
BINARY=../../generators/aurora/build/bareMetalC/mt_contention-
baremetal

req: requested
use: acquired

17

We showed in this simple example how AuRORA’s virtual interface handles
contention
It can be extended to complex heterogeneous many-accelerator SoC

It can be extended to complex multi-tenant case
with its ability to handle contention by adding runtime
to partition resources

Summary

Example heterogenous SoC
integrated with AuRORA

Task A

Task B

target: 15ms

target: 10ms

Runtime

Accelerators

Req: 5

Req: 4

