
Vikram Jain

UC Berkeley

vikramj@berkeley.edu

Hammer VLSI Flow and Scaling out

with Chiplets

Tutorial Roadmap

Custom SoC

Configuration

RTL Generators

RISC-V

Cores

Multi-level

Caches

Custom

Verilog
PeripheralsAccelerators

Software RTL Simulation

VCS Verilator

FireSim FPGA-Accelerated Simulation

Simulation Debugging Local/Meta

Automated VLSI Flow

Hammer
Tech-

plugins

Tool-

plugins

RTL Build Process

FIRRTL

Transforms
FIRRTL IR Verilog

FireMarshal

Bare-metal &

Linux

Custom

Workload

QEMU & Spike

Agenda

• Hammer applications

• Overview of Hammer’s abstractions

• Hammer community development

• Infrastructure for scale-out with chiplets

• Chiplet-yard for generating chiplets

• Die-to-die interface generators
3

Agenda

• Hammer applications

• Overview of Hammer’s abstractions

• Hammer community development

• Infrastructure for scale-out with chiplets

• Chiplet-yard for generating chiplets

• Die-to-die interface generators
4

Hammer for Real Tapeouts

5

Many Different Chips!

6

Eagle [1] HugeFlyingSoC NavRx WaterSerpent MythicChip OsciBear [2] HDBinaryCore

Description 9-core RISC-V

SoC

22-core RISC-V

SoC

GPS

receiver SoC

MU-MIMO

baseband SoC

RISC-V SoC

for ML

Bluetooth SoC Hyperdim.

computing proc.

Foundry Node A 16nm A 16nm A 16nm B 22nm C 12nm A 28nm, Sky130 A 28nm

Signoff Freq. 1.05 GHz 1.05 GHz 500 MHz 2 GHz 1.1 GHz 50 MHz -

Hierarchy levels 3 3 1 3 2 1 1

Person-months 22 10 6 5 4 8, 1 8

Eagle [1] WaterSerpent MythicChip

[1] C. Schmidt, et. al, ISSCC 2021

[2] D. Fritchman et. al, IEEE SSCS
Magazine, Spring 2022

Hammer in Courses

• Introduced in undergraduate digital circuits and systems labs:
• http://github.com/EECS150 (ASAP7 and Sky130 plugins)

• Special topics ‘tapeout’ class
• Spring 2024: 68 students with a mix of undergraduate and graduate students

7

2022 EE194/290C: BearlyML (left) & SCuM-V (right)
Intel 16nm

2021 EE194/290C: OsciBear
TSMC 28nm Sky130 MPW-2

Skywater 130nm

SCuM-V’23: 32b RISC-V core,

BLE + 802.15.4, LDOs, references,

radar

BearlyML’23: 4 RISC-V

Rockets with custom

sparse matrix acc, near-

memory acc, NoC, L2$

RoboChip’23: 2 RISC-V

Rockets with Kalman,

LQR acc, BooM + MTE,

NoC, L2$

SCuM-V’24 BearlyML’24 DSPChip’24

http://github.com/EECS150

Plugins Supported

8

Tech plugins

Foundry Node

A
16nm FinFET

28nm Planar

B
16nm FinFET

22nm FinFET

C
12nm FinFET

14nm FinFET

D 28nm SOI

Education
ASAP7

FreePDK45

Skywater 130nm

Tool plugins

Action Tool

Logic synthesis GenusC, Yosys, VivadoX, DCS

Place and Route
InnovusC, Vivado, OpenROAD,

ICCS

DRC/LVS CalibreM, ICVS, Magic/Netgen

Simulation VCSS, XceliumC

Power, EM/IR JoulesC, VoltusC

LEC ConformalC, Yosys

CCadence SSynopsys MSiemens Mentor XXilinx

Next generation technology nodes

9

Plugins to be Supported

10

Tech plugins

Foundry Node

A
16nm FinFET

28nm Planar

B

16nm FinFET

22nm FinFET

18A Gate-All-Around

C
12nm FinFET

14nm FinFET

D 28nm SOI

Education
ASAP7

FreePDK45

Skywater 130nm

Tool plugins

Action Tool

Logic synthesis GenusC, Yosys, VivadoX, DCS

Place and Route

InnovusC, Vivado, OpenROAD,

ICCS

Fusion CompilerS

DRC/LVS CalibreM, ICVS, Magic/Netgen

Simulation VCSS, XceliumC

Power, EM/IR JoulesC, VoltusC

LEC ConformalC, Yosys

CCadence SSynopsys MSiemens Mentor XXilinx

Agenda

• Hammer applications

• Overview of Hammer’s abstractions

• Hammer community development

• Infrastructure for scale-out with chiplets

• Chiplet-yard for generating chiplets

• Die-to-die interface generators
11

Hammer Design Principles

1. Separation of Concerns

• Decouple design-, tool-, and tech-specific concerns

12

Tech
Concerns

Design
Concerns

Tool
Concerns

Hammer Design Principles

1. Separation of Concerns

• Decouple design-, tool-, and tech-specific concerns

2. Standardization

• Data interchange schema for constraints, options, files

13

Tech
Concerns

Design
Concerns

Tool
Concerns

JSON/YAML

Hammer Design Principles

1. Separation of Concerns

• Decouple design-, tool-, and tech-specific concerns

2. Standardization

• Data interchange schema for constraints, options, files

3. Modularity

• Interchangeable & shareable tool & tech plugins

14

Tech
Concerns

Design
Concerns

Tool
Concerns

JSON/YAML

Sky130OpenROAD

Hammer Design Principles

1. Separation of Concerns

• Decouple design-, tool-, and tech-specific concerns

2. Standardization

• Data interchange schema for constraints, options, files

3. Modularity

• Interchangeable & shareable tool & tech plugins

4. Incremental Adoption

• Mix reusable & custom solutions

15

Tech
Concerns

Design
Concerns

Tool
Concerns

JSON/YAML

Sky130OpenROAD

my_custom_tcl

What is Hammer?

Hammer is:

… a Python framework for abstracting and

building standardized flows

16

What is Hammer?

Hammer is:

… a Python framework for abstracting and

building standardized flows

… not a typical CAD tool—it generates scripts

and manages tool execution

17

What is Hammer?

Hammer is:

… a Python framework for abstracting and

building standardized flows

… not a typical CAD tool—it generates scripts

and manages tool execution

… proven for architecture exploration,

teaching, and research chips

18

What is Hammer?

Hammer is:

… a Python framework for abstracting and

building standardized flows

… not a typical CAD tool—it generates scripts

and manages tool execution

… proven for architecture exploration,

teaching, and research chips

… open-source!

19

What is Hammer?

Hammer is:

… a Python framework for abstracting and

building standardized flows

… not a typical CAD tool—it generates scripts

and manages tool execution

… proven for architecture exploration,

teaching, and research chips

… open-source!

20

Project started in 2015, research chip use from 2016,

class use from 2019, currently ~35k lines of code

Hammer Software Architecture

21

Hammer Intermediate Representation (IR)

22

• Standard data interchange format

• Constraints, options, intermediate files, etc.

• YAML for humans, JSON for programs (annotation format)

• De-embeds designer intent and expertise from Tcl scripts

• IR Metaprogramming

• Modify any IR key with traceable history, type- and validity-checking

• Mechanism for partitioning and customizing design intent

Tool and Tech Plugins

Source file

pointers

Default

Hammer IR

● PDK modification

● Memory compilation

● Tech-specific flow actions

Default

Hammer IR

● Default commands

● Implement Hammer APIs

● Execute tool

● Parse errors, metrics

Output script

Hooks and Drivers

24

Hammer Driver

• Parses all IR, hooks

• Auto-generates

hierarchical flow graph

as Makefile

• Easy-to-use CLI

Hooks = customization

• Replace, modify, insert

flow steps (inject Tcl)

• Written by designer or

supplied by tech plugin

Agenda

• Hammer applications

• Overview of Hammer’s abstractions

• Hammer community development

• Infrastructure for scale-out with chiplets

• Chiplet-yard for generating chiplets

• Die-to-die interface generators
25

Everyone can use Hammer

26

How: provide sensible defaults with methods to override

Result: gets you 80-90% of the way there out of the box

• Easily learn the VLSI flow, get early design feedback

• Chipyard examples with ASAP7, Sky130

Sensible default Override method

A default set of flow steps for every action (syn, par, etc.) Hooks - inject your own steps anywhere

Auto-generated timing (SDC) & power (CPF) constraints Use your own custom SDC and CPF files

Auto-generated power meshes from high-level parameters Use foundry-provided or your own mesh generator

Auto-generated Makefile implementing flow graph Running Hammer via command line, custom Makefiles

https://github.com/ucb-bar/chipyard/tree/main/vlsi

https://chipyard.readthedocs.io/en/latest/VLSI/Sky130-OpenROAD-Tutorial.html

Tutorial: TinyRocket RTL-to-GDS

https://chipyard.readthedocs.io/en/latest/VLSI/Sky130-OpenROAD-Tutorial.html

Summary

28

• Physical design is hard—there are good reasons
why most people try to avoid it.

• Chips are growing in complexity

• Un-natural evolution of the EDA/PDK stack

• Hammer helps separate design, tool, and
technology concerns

• Enables re-use

• Enables advanced abstractions and generators

• Easy power and area evaluation
• Using Hammer, open source PDK, commercial EDA

Design Tool

Tech.

Learn More

• Github: https://github.com/ucb-bar/hammer/

• Documentation: https://hammer-vlsi.readthedocs.io/

• Chipyard-specific documentation:
https://chipyard.readthedocs.io/en/latest/VLSI/index.html

• Discussions/forum: https://github.com/ucb-bar/hammer/discussions

• Mentor plugin access request:

• hammer-plugins-access@lists.berkeley.edu

• UCB Digital Design labs: https://github.com/EECS150/asic_labs_sp23
• full lab releases coming soon!

https://github.com/ucb-bar/hammer/
https://hammer-vlsi.readthedocs.io/
https://chipyard.readthedocs.io/en/dev/VLSI/index.html
https://github.com/ucb-bar/hammer/discussions
http://github.com/ucb-bar/hammer-mentor-plugins
mailto:hammer-plugins-access@lists.berkeley.edu
https://github.com/EECS150/asic-labs-sp23

Agenda

• Hammer applications

• Overview of Hammer’s abstractions

• Hammer community development

• Infrastructure for scale-out with chiplets

• Chiplet-yard for generating chiplets

• Die-to-die interface generators
30

Chiplets in academia

• Industry is embracing chiplets to optimize cost of high-volume performant products

• Secondary consideration is to reduce the NRE of domain-specific solutions

31

• Academia Goal: Enable development of complete functional and performant domain-specific

systems by de-risking critical pieces (focus on NRE)
• Chiplets can be reused, if based on standard interfaces

• Chiplets enables bottom-up approach to scaling

• Design cost is lower, but not negligible

• We need to keep innovating, while demonstrating complete systems

Our motivation for chiplets

• We have designed increasingly more complex chips to test our design methodologies

• EagleX: 20-core (X-tile) RISC-V SoC

– 7.5mm x 7.5mm die in TSMC 16FFC

– Boots Linux

– Hard to justify repeatedly building chips like these in Academia

• Build a base chiplet that can be shared across multiple platforms

– Innovation focused on partner chiplets

• Build many small chiplets to scale up and scale out
32

chiplet

chiplet
c
h

ip
le

tc
h

ip
le

t

Framework for Chiplet Systems

• Need systematic framework for building,
evaluating, and testing complete chiplet-
based systems

• Need standard interfaces between chiplets
for plug-and-play support with our and 3rd
party IPs

• Tasks:

– Chiplet-yard – extending Chipyard SoC
generator for generating chiplets

– Die-to-die standard interface generators

– Networks-on-package generators

– FireSim based FPGA emulation of multi-
chiplet solution

33

Protocol Layer
(CXL/PCIe/TileLink/AXI)

Network-on-Package
Generator

D2D PHY
Generator

FPGA-based
FireSim emulation

for Chiplet
evaluation

Chiplet-yard
SoMC

generator

CHIPLET-YARD

User Config
(Protocol? D2D

interface?)

Agenda

• Hammer applications

• Overview of Hammer’s abstractions

• Hammer community development

• Infrastructure for scale-out with chiplets

• Chiplet-yard for generating chiplets

• Die-to-die interface generators
34

Objective 1: Reusable Base chiplet

• Build a base chiplet which can be reused across multiple system configurations
• Base chiplet allows for reusability of IPs, with innovation focused on partner chiplets
• Base chiplet would consists of mix of CPUs, NPUs, Memory and D2D interfaces

35

Big
Core

Little
Core

UCIe D2D

Caches

NPU

SPAD

LPDDR

Base Chiplet

Objective 2: Multi-chiplet configurations

• Chiplet-yard will enable:
– scaling of chiplets
– broad spectrum of mix-and-match systems

36 36

Base
Chiplet

Base
Chiplet

Base
Chiplet

Partner
Chiplet

Base
Chiplet

Base
Chiplet

Partner

Chiplet

Partner

Chiplet

Scalability Heterogeneity

Objective 3: Full stack ecosystem

• Chiplet-yard will enable full stack ecosystem for rapid evaluation and SoP generation

37 37

CHIPLET

38

• Take advantage of existing IP
• Extend bringup infrastructure

• Configurable bus connections off-chip
• Make chip to FPGA APIs generic for multi-Chiptop

Extending Chipyard for Chipletization

38

CHIPLET-YARD

39

$CYDIR/generators/chipyard/src/main/scala/config/ChipletConfigs.scala

• 2 identical chips
• 1 Rocket core
• 2 Serial-TL Ports: chip<->ext mem, chip<->chip
• Offchip bus (OBUS) off of system bus (SBUS)

• Each chip can access the memory of the other chip
• Manage 3 clock domains: chip-clock, outgoing-clock, incoming-clock
• Bring up multiple chips simultaneously

Symmetric Config - Homogeneous chiplets

39

Summary

• We currently support multi-chip/chiplet configs and simulation in Chipyard

• Current configs are using non-coherent data exchange

Future works:

• Enable full cache coherency across chiplets

• Integrate UCIe for chip-to-chip communication

• Support chiplet simulation in FireSim

• Network-on-package generator

40

Agenda

• Hammer applications

• Overview of Hammer’s abstractions

• Hammer community development

• Infrastructure for scale-out with chiplets

• Chiplet-yard for generating chiplets

• Die-to-die interface generators
41

UCIe Protocol Stack

• Layered protocol

– Each layer performs distinct

function

• Three layers

– Protocol

– Die-to-Die Adapter (Link Layer)

– Physical Layer

• Layers are connected with

standardized interfaces

– Flit-aware D2D Interface (FDI)

– Raw D2D Interface (RDI)

42

UCIe-lite

We are building generators for a reduced version of UCIe called UCI—lite

Incremental development: UCIe-lite will be extended to full UCIe in later versions

43

Protocol Layer D2D Adapter Physical Layer Sideband

• Streaming mode

• Raw 64B flit mode
• CRC added by protocol

layer

• Single protocol stack
• Carries TileLink Uncached

and Cached protocol

• No support for CXL/PCIe

• No support for other flit
modes

• Stall req/ack

• FDI/RDI State Machines
• Link testing with parity
• Retrain

• LinkError
• Dynamic clk gating

• Power Management

• No ARB/MUX

• No DLLP
• No Flit cancel mechanism

• No CRC and Retry

• Link initialization/training

• Byte to lane mapping for
data transmission over
Lanes

• Transmitting and receiving
sideband messages

• Scrambling and training
pattern generation

• Free running clock mode

only
• Streaming mode only

• No PHY retrain
• No lane reversal

• No multi-module link

• Full spec implementation

• Reduced message set for
streaming mode-raw only

and for limited states of
D2D/PHY

• Three types of packets:
Register access packets,

Message without data,
Message with data payload

• Credit-based flow control

• 8ms timeout

UCIe-Lite: Protocol Layer

• Protocol adapter connects to a bus/NoC in an SoC

• Sideband node uses memory-mapped registers for

Sideband messaging

• We use TileLink as our frontend protocol, can be

extended to any other bus protocols such as AXI, CHI,

etc.

• Supports TL-Uncached and Cached packet translation

• Converts the TL messages to UCIe Raw Flit and sends

over FDI interface to D2D adapter

• Adds checksum using hamming encoder/decoder

• Credit-based flow used to provide backpressure in multi-

die systems

44

UCIe-Lite: Flit Format v1.0

• Initial version of UCIe Raw 64B flit format used in our implementation

• Reserved bits provided for future expansion

45

Checksum Data Data Data Data Header2 Header1 Cmd
512
bits

64b

Reserved Partner ID Host ID Credits MsgTypeCmd

Header 1: carries address of 64b

Header 2: TL configs

MsgType: 8 bits enum
Can be TL channel type, AXI, ReRoCC, Debug, reserved for
future

Credits: Carries the credit return for the different channels

Reserved in cmd can be used for QoS, discovery, etc.

corrupt denied mask sink source size param opcode

UCIe-Lite: D2D Adapter

• FDI/RDI state machines

• LinkInit module handles the Link Initialization steps of the

UCIe specs

• Handles stall req/ack, clk req/ack and wake req/ack

46

Linkinit Submod

LinkReset Submod

Disabled Submod

FDI stall
req/ackLink

Management
Controller

Mainband
module

Sideband
module

FDI

RDI

SB
 m

es
sa

ge

PHY status
Inband pres

State req
Inband pres

INIT

RDI BU

Param
exch

FDI BU

INIT
Done

Linkinit Submod

FDI/RDI State Machine

Source: UCIe Spec 1.1

Pwr Mgmt
Submod

RDI stall
req/ack

FDI clk
req/ack

FDI wake
req/ack

RDI wake
req/ack

RDI clk
req/ack

UCIe-Lite: Logical PHY

• Maps bytes to lane

• Link Training – we use a RISC-V core to trigger

and handle training parameters
• Link training parameters are stored as MMIO registers

for the core to probe and update

• Link Initialization state machines for mainband and

sideband

• Pattern generators for testing and scrambler

functionality

• Error detector for linktraining

47

UCIe-Lite: Sideband

• Sideband module needs to

be on every layer to send

sideband messages

• Sideband node handles

serdes and credit flow of SB

packets

• Sideband switcher controls

flow of messages to

submodules or stack transfer

48

Integration into Chipyard

• UCIe stack can be attached to Sbus/Obus in Chipyard SoC

• It can also be instantiated as a Tile in Constellation NoC

49

Summary

• Die-to-Die interface are vital to enable performant and energy-efficient chiplet systems

• Open standards helps build an open ecosystem

• We want to provide an open-source generator for UCIe controller and PHY, to enable

academia/industry to leverage this ecosystem

• In doing so, we want to showcase some interesting prototypes of heterogeneous chiplet

systems

• UCIe-digital: https://github.com/ucb-ucie/uciedigital

• UCIe-analog: https://github.com/ucb-ucie/ucieanalog

50
UCIe-digital UCIe-Analog

https://github.com/ucb-ucie/uciedigital
https://github.com/ucb-ucie/ucieanalog

	Slide 1
	Slide 2: Tutorial Roadmap
	Slide 3: Agenda
	Slide 4: Agenda
	Slide 5: Hammer for Real Tapeouts
	Slide 6: Many Different Chips!
	Slide 7: Hammer in Courses
	Slide 8: Plugins Supported
	Slide 9: Next generation technology nodes
	Slide 10: Plugins to be Supported
	Slide 11: Agenda
	Slide 12: Hammer Design Principles
	Slide 13: Hammer Design Principles
	Slide 14: Hammer Design Principles
	Slide 15: Hammer Design Principles
	Slide 16: What is Hammer?
	Slide 17: What is Hammer?
	Slide 18: What is Hammer?
	Slide 19: What is Hammer?
	Slide 20: What is Hammer?
	Slide 21: Hammer Software Architecture
	Slide 22: Hammer Intermediate Representation (IR)
	Slide 23: Tool and Tech Plugins
	Slide 24: Hooks and Drivers
	Slide 25: Agenda
	Slide 26: Everyone can use Hammer
	Slide 27: Tutorial: TinyRocket RTL-to-GDS
	Slide 28: Summary
	Slide 29: Learn More
	Slide 30: Agenda
	Slide 31: Chiplets in academia
	Slide 32: Our motivation for chiplets
	Slide 33: Framework for Chiplet Systems
	Slide 34: Agenda
	Slide 35: Objective 1: Reusable Base chiplet
	Slide 36: Objective 2: Multi-chiplet configurations
	Slide 37: Objective 3: Full stack ecosystem
	Slide 38: Extending Chipyard for Chipletization
	Slide 39: Symmetric Config - Homogeneous chiplets
	Slide 40: Summary
	Slide 41: Agenda
	Slide 42: UCIe Protocol Stack
	Slide 43: UCIe-lite
	Slide 44: UCIe-Lite: Protocol Layer
	Slide 45: UCIe-Lite: Flit Format v1.0
	Slide 46: UCIe-Lite: D2D Adapter
	Slide 47: UCIe-Lite: Logical PHY
	Slide 48: UCIe-Lite: Sideband
	Slide 49: Integration into Chipyard
	Slide 50: Summary

