
Using On-Premise FPGAs and
Distributed Metasimulation

MICRO 2022 Tutorial
Speaker: Abraham Gonzalez

https://fires.im
@firesimproject

Tutorial Roadmap
Custom SoC
Configuration

RTL Generators
RISC-V
Cores

Multi-level
Caches

Custom
VerilogPeripheralsAccelerators

Software RTL Simulation

VCS Verilator

FireSim FPGA-Accelerated Simulation

Simulation Debugging Local/Meta

Automated VLSI Flow

Hammer Tech-
plugins

Tool-
plugins

RTL Build Process
FIRRTL

TransformsFIRRTL IR Verilog

FireMarshal
Bare-metal &

Linux

Custom
Workload

QEMU & Spike

Agenda

• Using On-Premise FPGAs
• Case Study: How to build/run simulations locally with your own FPGA?

• Build Farms, Run Farms, Bit Builders, Deploy Managers Deep Dive
• What are they and how do they configure the manager?

• Distributed Metasimulation
• Scale-out software simulation

3

4

Some of our most requested questions…

5

Some of our most requested questions…

“AWS EC2 F1 FPGAs are great but how do I use
the on-premise FPGAs that I have?”

Support for On-Premise FPGAs

• Support for Xilinx Alveo U250 FPGAs
• Experimentally released in 1.14.0!

• Integrates seamlessly with existing
FireSim collateral + tooling
• Few line change to target on-premise

FPGA vs AWS EC2 F1 FPGAs

6

7

Case Study: How to build and run simulations locally?

Building a U250 bitstream

• Creating a new build recipe
• Use the bit_builder_recipe field to build a Vitis U250 bitstream
• Everything else is shared from AWS EC2 F1 to Vitis!

8

firesim_rocket_singlecore_no_nic:
DESIGN: FireSim
TARGET_CONFIG: FireSimRocketConfig
PLATFORM_CONFIG: BaseVitisConfig
deploy_triplet: null
post_build_hook: null
metasim_customruntime_config: null
bit_builder_recipe: bit-builder-recipes/vitis.yaml

Single-core Rocket configuration
with single DRAM channel

Building a U250 bitstream

• Running the bitstream build
• Use the externally provisioned build farm to use a local machine
• Everything else is the same!

• Run firesim buildbitstream

9

build_farm:
base_recipe: build-farm-recipes/externally_provisioned.yaml
recipe_arg_overrides:
default_build_dir: <PATH TO USER BUILD DIRECTORY>
build_hosts_to_use:
- localhost

builds_to_run:
- firesim_rocket_singlecore_no_nic

Building a U250 bitstream

• Expect to see a HWDB entry in deploy/built-hwdb-entries/*
• Similar format to AWS EC2 case, only has an xclbin instead of agfi

10

firesim_rocket_singlecore_no_nic:
xclbin: <PATH TO XCLBIN FILE>
deploy_triplet_override: FireSim-FireSimRocketConfig-BaseVitisConfig
custom_runtime_config: null

Running a U250 bitstream

• Uses externally provisioned run farm to
target local FPGAs
• In this case, a local machine with 4 U250s
• Use VitisInstanceDeployManager

to setup run farm hosts for U250s

• Use the HWDB entry created in the
prior section
• Same process as before!

• launchrunfarm, infrasetup,
runworkload, terminaterunfarm

• Attach to running screen session to interact
• Have results automatically copied back

11

run_farm:
base_recipe: run-farm-

recipes/externally_provisioned.yaml
recipe_arg_overrides:
default_platform: VitisInstanceDeployManager
default_simulation_dir: <PATH TO SIM DIR>
run_farm_hosts_to_use:
- localhost: four_fpga_spec

target_config:
topology: no_net_config
no_net_num_nodes: 1
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1

default_hw_config:
firesim_rocket_singlecore_no_nic

workload:
workload_name: linux-uniform.json

Behind the Scenes: Build + Run Farms

• Manager rearchitected for
maximum configurability
• Target different clouds/clusters
• Convenient defaults for AWS EC2

and set of unmanaged machines
(typical pre-setup cluster)

12

Default Distributed AWS EC2 Setup

Behind the Scenes: Build + Run Farms

• Manager rearchitected for
maximum configurability
• Target different clouds/clusters
• Convenient defaults for AWS EC2

and set of unmanaged machines
(typical pre-setup cluster)

13

Completely Local Setup

Behind the Scenes: Build + Run Farms

• Manager rearchitected for
maximum configurability
• Target different clouds/clusters
• Convenient defaults for AWS EC2

and set of unmanaged machines
(typical pre-setup cluster)

14

Mixed Setup:
Local Builds + Distributed Simulations

• In config_<build/runtime>.ini
• base_recipe sets type of build/run farm
• You can modify its defaults by

• Modifying the recipe file directly
• Overriding using recipe_arg_overrides

Behind the Scenes: Build + Run Farms

15
config_runtime.yaml example

• Two types of default build/run farm types
• AWS EC2 (aws_ec2.yaml)
• Default build/run farms used on AWS EC2
• Fully distributed builds and simulations
• Equivalent functionality to pre-1.14.0

• Externally Provisioned (externally_provisioned.yaml)
• Use a pre-setup cluster of machines (including running locally)
• Just needs FPGA platform (i.e. Vitis), number of FPGAs, and IP/hostname

Behind the Scenes: Build + Run Farms

16

Behind the Scenes: Bit Builders + Deploy Managers

• Notice how nothing was mentioned about type of FPGA used!
• Target different FPGA platforms as well!

• AWS EC2 F1 or Vitis Alveo U250 FPGAs

• This is done by
• Bit Builders – abstract bitstream build process
• Deploy Managers - abstract setup of run farm hosts for FPGA platform

• You can see this in config_build_recipes.yaml and a specific
run farm recipe (i.e. aws_ec2.yaml)

17

Behind the Scenes: Maximum Configurability

18

Custom Build
Farm

AWS EC2 Build
Farm

Cluster Build
Farm

Custom Run
Farm

AWS EC2 Run
Farm

Cluster Run
Farm

AWS EC2 F1
Bitstreams

Vitis U250
Bitstreams

• Manager rearchitected for
maximum configurability
• Target different clouds/clusters
• Target different bitstreams
• And any combinations of them!

19

“Gah! My FireSim simulation breaks,
how do I do FireSim SW-level metasimulation again?”

20

RTL Design
Physical
DRAM

100ns
latency

<- Resp Queue

Req Queue ->

DRAM
Model

100
cycle

latency

Mem
Channel

“FAME-1” Transformed RTL Design

Metasimulation

FPGA Fabric

Abstract
ModelTarget-Level

SW Simulation

Metasimulation Recap

Metasimulation Recap

• Software RTL Simulation
• Target design transformed by Golden Gate
• Host-FPGA interfaces/shell emulated using abstract models
• Uses existing FireSim models (i.e. DRAM, UART)

But how do I run it?

21

• Original make API
• In $FDIR/sim

• Issues
• What are the make variables/targets I need to pass in?
• How do I run multiple tests in parallel? Bash script it myself?
• How do I run my existing FireMarshal workload with this?

22

Running Metasimulations

$ make
EMUL=<verilator|vcs>
DESIGN=FireSimNoNIC
run-asm-test-debug

• Original make API
• In $FDIR/sim

• Issues
• What are the make variables/targets I need to pass in?
• How do I run multiple tests in parallel? Bash script?
• How do I run my existing FireMarshal workload with this?

23

Running Metasimulations

$ make
EMUL=<verilator|vcs>
DESIGN=FireSimNoNIC
run-asm-test-debug

Better yet! Just have the FireSim
manager do everything!

Running In Metasimulation Mode

• In config_runtime.yaml use the metasimulation mapping
• enabled: FPGA simula]on → SW RTL metasimula]on
• host_simulator: Choose to run Verilator/VCS w/ and w/o waveforms
• *plusargs: Extra non-FireSim specific arguments to pass to simulator

• Has same features as FPGA simula^ons!
• Use arbitrary Run Farms
• Automa]c copying of results
• Use FireMarshal workloads
• Quickly do FPGASim ↔ MetaSim
• Same performance results

24

metasimulation:
metasimulation_enabled: true
metasimulation_host_simulator: verilator
metasimulation_only_plusargs: …
metasimulation_only_vcs_plusargs: …

Example Workflow

1. Write default RTL in Chipyard
2. Debug in Chipyard w/ target-level simulation
3. Port to FireSim (change config. files, use FireMarshal workload)
4. DSE and debugging w/ single/multi-node metasimulations
5. Testing w/ single/multi-node FPGA simulations using Vitis U250s
6. Scale-out to datacenter scale with AWS EC2 F1

25

Example Workflow

1. Write default RTL in Chipyard
2. Debug in Chipyard w/ target-level simulation
3. Port to FireSim (change config. files, use FireMarshal workload)
4. DSE and debugging w/ single/multi-node metasimulations
5. Testing w/ single/multi-node FPGA simulations using Vitis U250s
6. Scale-out to datacenter scale with AWS EC2 F1

26

Unified workflow for agile
research of RISC-V systems!

Summary

• Customize how/what/where you build/run things
• Local Builds → Fully Distributed AWS EC2 Builds
• Local Simulations → Fully Distributed AWS EC2 Simulation
• And everything in between

• Target both local and AWS EC2 FPGAs
• Supporting Xilinx Alveo U250s

• Distributed SW RTL metasimulations
• Debug RTL using unified infrastructure
• Use FireSim modeling + features in SW RTL simulation

27

Check out https://docs.fires.im/

for more usage details

https://docs.fires.im/

