Tutorial Conclusion

Abraham Gonzalez
UC Berkeley
abe.gonzalez@berkeley.edu

O |1
O EireSimEe | rf?‘(ARD



e N

« Chipyard Basics
« Composing SoC using generators
» Adding custom accelerators
« Simulation

o

ustom S0
u onfiguration
* Protot —
ro O I n RTL Generators
FireMarshal . Custom
metal & RISC-V Mult-level | pgripherals
i V L S I fI OW Bar?_inmuia Cores Accelerators Caches P Venlog
Custom ‘
. . Workload RTL Build Process
* FireSim ) e e
R Transforms Verilog

 Full-system FPGA-accelerated simulation
 Linux-based software workloads
* Debugging and instrumentation

@ Berkeley Architecture Research

Automateq VLSI Flow

Tech-
; Tool-
lu
Plugins plugins



Future Development

» Local FPGA support w/ FireSim

 Better support for open-source EDA and fabrication
* OpenRoad

* New cores + accelerators
* Mixed signal integration

Credit: https://medium.com/@jondishotsky/talking-houses-and-flying-cars-55c431c7f2ec

}9 Berkeley Architecture Research



Chipyard Goals

/

Community-
friendly

\

Research-
friendly

Berkeley Architecture Research

Education-
friendly

\




Chipyard is Community-Friendly n$

Docs » Welcome to Chipyard’s documentation! Q) Edit on GitHub

Documentation:
» https://chipyard.readthedocs.io/
« 133 pages ++

» Most of today’s tutorial content is
covered there

Welcome to Chipyard’s documentation!

. FCHIP

Chipyard is a framework for designing and evaluating full-system hardware using

agile teams. It is composed of a collection of tools and libraries designed to provide
an integration between open-source and commercial tools for the development of

- u -
M al I I n g L I St : 1 Chipyard Basics systems-on-chip.

2. Simulation

* google.com/forum/#!forum/chipyard [ @ Important
st New to Chigyard? Jump to the Initial
Repository Setup page for setup instructions.

6. Customization

Open-sourced:
° A” COde iS hOSted On GitHub H ucb-bar chipyard [\ Notifications Y7 Star 500 % Fork 258

* Issues, feature-requests, PRs are g
welcomed

Berkeley Architecture Research



https://chipyard.readthedocs.io/en/dev/
https://groups.google.com/forum/

Chipyard is Education Friendly 'é$

Proven in many Berkeley HW/Architecture

courses
. . Custom SoC
« Hardware for Machine Learning Configuration
« Undergraduate Computer Architecture < *
. RTL Generators
- Graduate Computer Architecture RISCV Multi-level . Custom
L Accelerators Peripherals .
« Advanced Dlgltal ICs Cores Caches Verilog
. : 7 ¥ ]
Tapeout HW design course T Build Procecs
Intermediate
Advantages of common shared HW RISC-V Representation Process
f k Software i 3 Technology
ramewor . FireSim VLSI
* Reduced ramp-up time for students Transforms Transforms
« Students learn framework once, reuse it in | N ‘ ¥
FPGA- Software Automated
later courses . Accelerated \ RTL VLSI
« Enables more advanced course projects Simulation Simulation Flow

(tapeout a chip in 1 semester) Computer

Architecture
Class

Digital
Integrated Circuits
Class

Special Topics
Classes

@ Berkeley Architecture Research 6



Chipyard is Research-Friendly 'é$

« Add new accelerators/custom instructions

* Modify OS/driver/software

* Perform design-space exploration across many parameters
 Test in software and FPGA-sim before tape-out

Numerous research projects built on Chipyard/FireSim...
Including MICRO’21 award winners

Best Paper Runner Up - TIP: Time-Proportional Instruction Profiling
Distinguished Artifact - A Hardware Accelerator for Protocol Buffers

https://dl.acm.org/doi/10.1145/3466752.3480058
@ Berkeley Architecture Research https://doi.org/10.1145/3466752.3480051 7



https://dl.acm.org/doi/10.1145/3466752.3480058
https://doi.org/10.1145/3466752.3480051

Owersiyoiuses TR

Chips

System Research

Keystone: An Open Framework for Architecting
Trusted Execution Environments

Dayeol Lee David Kohlbrenner
dayeol@berkeley.edu dkohlbre@berkeley.edu
uc T ) T

Abstract
Trusted execution
devices from embe
compass a range o
threat model choice
vendor-specific TE
little room for custc
open-source framey
stone uses simple
such as memory isc
neath untrusted cc
TEE core primitive:
platform-specific m
We showcase how 1
RISC-V hardware a
sign in terms of sec
benchmarks, applic

Shweta Shinde
shwetas@berkeley.edu

The nanoPU: Redesigning the CPU-Network Interface
to Minimize RPC Tail Latency

Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen,
Muhammad Shahbaz, Nick McKeown, Changhoon Kim

Stanford University

Abstract

The nanoPU is a new networking-optimized CPU designed
to minimize tail latency for RPCs. By bypassing the cache
and memory hierarchy, the nanoPU directly places arriving
messages into the CPU register file. The wire-to-wire latency
through the application is just 65ns, about 13X faster than the
current state-of-the-art. The nanoPU moves key functions from
software to hardware: reliable network transport, congestion
control, core selection, and thread scheduling. It also supports
a unique feature to bound the tail latency experienced by
high-priority applications.

Our prototype nanoPU is based on a modified RISC-V CPU:
we evaluate its performance using cycle-accurate simulati
of 324 cores on AWS FPGAs, including real applications
(MICA and chain replication).

paper is the wire-to-wire latency, defined as the time from
when the first bit of an RPC request message arrives at the
NIC, until the first bit of the processed RPC response leaves
the NIC. The best reported median wire-to-wire latency is
around 850ns [28]. Our goal is to reduce both median and
tail numbers to below 100ns, making it worthwhile to run
“nanoServices”; short RPCs requiring less than 1us of work.

Many prior attempts to reduce RPC overhead have included
low-latency and lossless switches [30, 35, 8], a reduced num-
ber of network tiers, and specialized libraries [28]. The current
fastest approaches deploy dedicated NIC and switch hardware,
but these are hard to program [25, 24, 26, 50].

Our work asks the question: Can we design a future CPU
core that is easy to program, yet can serve RPC requests
with the absolute minimum overhead and tail latency? Our

design, which we call the nanoPU. can be seen as a model

Berkeley Architecture Research

Berkeley engineering students pull off novel chip
design in a single semester

Class shows successful model for expanding entry into field of
semiconductor design

June 17, 2021

In what could have important implications for engineering education as well as the field of chip design, a class

of Berkeley Er
novel chip tha
course, 19 stu
end of a four-

The currentg
industry news
manufacturin;
semiconductc
semiconductc

—

The term “tape-out” refers to the process of
recording a chip’s final design and delivering it
for fabrication — in this case, to the Taiwan
Semiconductor Manufacturing Company. This
used to be handled via magnetic tape but
nowadays happens electronically, a digital file
converted to a physical chip.

With the support of Apple, Nikoli¢, fellow
professors Kris Pister and Ali Niknejad, and
graduate student instructors Dan Fritchman and
Aviral Pandey led 10 undergrads, five master’s
students and four Ph.D. candidates through the
design and successful tape-out of a novel chip
within the span of a single semester. It had never
before been done at Berkeley.

“It’s a testament to our students, the teaching
assistants and the faculty that we were able to
pull it off, but also to the infrastructure for chip

design that Berkeley has put together over the last decade,” said Pister. “It’s really quite remarkable, and most

Shown is a “tape-out” of a novel chip design completed by
Berkeley Engineering students.

people that | talk to don’t believe me when | tell them what we did.”

RISC-V Development

Presentation

TEE Hardware for RISC-V

This session shows an exploration of RISC-V hardware generation to implement hardware accelerators for a
Trusted Execution Environment (TEE) application. The first exploration to talk about is the Rocket Chip Generator
combined with CHIPYARD, which is compared with the * * 't e me s

configurable RISC-V Rocket Cores with TileLink buses.
type and buses. Although the CHIPYARD libraries are t
independent, making the implementation of CHIPYAR!
the Rocket scala libraries, is possible to implement pe
system. The TEE software is constructed under this he
keypair generation and data signing with and without t
TEE, and includes the early-stage bootloader which pe
TEE executable demos to demonstrate the correct bet
Berkeley Out-of-Order Machine (BOOM) Processor, anc
CHIPYARD. The implementation of the system can per
technology nodes. Additional configurable options are
memory, Xilin PGl IP inclusion, USB 1.1 Host inclusi

Key Takeaways
« Show the interaction between software and hard
main application

« Clearthe obscurity of using RISC-V hardware ger
inside focus on CHISEL-based designs (rocket-cl

« Present an insight of including fixed or semi-fixer
includes Verilog-based and system Verilog-base:

« Demonstrate the extensibility of the current RISC

m - 500pm

SPEAKER

s Ckristian Duran
Re nt

University of Electro-Communications

e

Presentation

Leveraging the RISC-V Eco-System to Put a Chip in Customer Hands in less
than $10M

This talk will present the journey of in ping the first Cluster CPU, with a focus on how
the RISC-V eco-system enables delivering a commercially viable chip, in a 12nm process node, into customer hands
at less than $10M.

Audience members will hear the ways in which the cost to deliver such as chip has been reduced, including the role
that the RISC-V software ecosystem played, the role of the Rocket-Chip RTL available from Chip Yard, the role of
FireSim FPGA emulation system, and the role of the Chisel hardware language.

Key Takeaways

« If you have an idea, it is indeed possible to bring it to market on less than $10M.

« Cost reduction derived from: SW eco-system (S, toolchain) ~ Open Source RTL (Rocket-Chip, chipyard) ~
Emulation (FireSim)

« Chisel plus FireSim enabled FPGA centric development ~ time to modify RTL not far from time to modify
software simulator - but at a cost

Community Ecosystem
Tuesday, 8 December 2020 11:00am - 11:20am
PST (Pacific Standard Time, GMT-)

SPEAKER

Sean Halle

CEO

Intensivate




Join The Community!

» Used in industry and academia

* Development is all open-source and on Github
« Stable 'master’ branch (latest release)
» Less-stable "dev’ branch with all the newest features

« Sub-projects managed using submodules

* Over 130 pages of documentation!
* [f something isn’t clear, please let us know

* Lots of communication on the mailing list
* We appreciate feedback! We appreciate PRs even more!
* Thank you for attending!

@ Berkeley Architecture Research



Loambore (AT

 Chipyard $ X
« Github: https://github.com/ucb-bar/chipyard/ CH I h"

* Docs: https://chipyard.readthedocs.io/en/latest/index.html
« Mailing List: https://groups.google.com/forum/#!forum/chipyard

e FireSim

« Website: https://fires.im/ o .

« Github: https://github.com/firesim/firesim/ é I:l reS| m
* Docs: https://docs.fires.im/en/latest/

« Mailing List: https://groups.google.com/forum/#!forum/firesim

@% Berkeley Architecture Research



https://github.com/ucb-bar/chipyard/
https://chipyard.readthedocs.io/en/dev/index.html
https://groups.google.com/forum/
https://fires.im/
https://github.com/firesim/firesim/
https://docs.fires.im/en/latest/
https://groups.google.com/forum/

