o o Instrumenting and Debugging
° FlreS|m FireSim-Simulated Designs

https://fires.im
YW @firesimproject

MICRO 2021 Tutorial

Abraham Gonzalez

Berkeley Architecture Research

i |

* FPGA-Accelerated Deep-Simulation Debugging
* Debugging Using Integrated Logic Analyzers
* Trace-based Debugging
e Out-of-band Performance Counters
* Synthesizable Assertions/Prints
* Dromajo and FireSim

* Debugging Co-Simulation
* FireSim Debugging Using Software Simulation

Berkeley Architecture Research 2

When SW RTL Simulation is Not Enough...

“Everything looks OK in SW simulation, but there is still a bug somewhere”

“My bug only appears after hours of running Linux on my simulated HW”

Berkeley Architecture Research

T LAS TRYING TO
FGURE. OUr WHY
MY BROWSER LWAS
ACTING WEIRD:

)

]

TURNS OUT IT WASNT
THE BROWSER-THE
ISSUE WAS ITH MY

PCIE CONTROLLER

/

]

DEBUGGING 7THAT™ LED
ME TO A MYSTERIOUS
ERROR MESSAGE. FRomM
A SYSTEM UTILITY...

)

ANYWAY, LONG STORY SHORT,
T FOUND THE SWORD OF
I"HRTNTHE LARRIOR.

I THINK AT SOME
POINT THERE YOU
SUUZHED PUZ2LES.

W

FPGA-Based Debugging Features

* High simulation speed in FPGA-based simulation enables advanced
debugging and profiling tools.

* Reach “deep” in simulation time, and obtain large levels of coverage and
data

e Examples:
* |LAs
* TracerV
* Synthesizable assertions, prints

Simulation Simulation Time

Berkeley Architecture Research 4

Debugging Using Integrated Logic Analyzers

Integrated Logic Analyzers (ILAS)
« Common debugging feature provided by FPGA vendors

* Continuous recording of a sampling window
* Up to 1024 cycles by default.
 Stores recorded samples in BRAM.

* Realtime trigger-based sampled output of probed signals
* Multiple probes ports can be combined to a single trigger
* Trigger can be in any location within the sampling window

* On the AWS Fl1-Instances, ILA interfaced through a
debug-bridge and server

Berkeley Architecture Research

// Integ d g alyzers (ILA)
ila (

.clk (clk_main_a@),
.probe@ (sh_ocl_awvalid_q)
.probel (sh_ocl_awaddr_q)
.probe2 (ocl_sh_awready_q)
.probe3 (sh_ocl_arvalid_q)
.probe4 (sh_ocl_araddr_q)
.probe5 (ocl_sh_arready_q)
)5

.clk (clk_main_a@),

probee (ocl_sh_bvalid_q),

probel (sh_cl_glcounte_qg),

probe2 (sh_ocl_bready_q),

.probe3 (ocl_sh_rvalid_q),

probe4 ({32'be,ocl_sh_rdata_q[31:0]}),
probe5 (sh_ocl_rready_q)

// Debug Bridge
cl_debug_bridge CL_DEBUG_BRIDGE (
.clk(clk_main_a®@),
.S_BSCAN_drck(drck),
.S_BSCAN_shift(shift),
.S_BSCAN_tdi(tdi),
.S_BSCAN_update(update),
.S_BSCAN_sel(sel),
.S_BSCAN_tdo(tdo),
.S_BSCAN_tms (tms),
.S_BSCAN_tck(tck),
BSCAN_runtest(runtest),
BSCAN_reset(reset),
S_BSCAN_capture(capture),
BSCAN_bscanid_en(bscanid_en)

);

From: aws-fpga cl_hello_world example

Debugging Using Integrated Logic Analyzers

AutolLA — Automation of ILA integration with FireSim
* Annotate requested signals and bundles in the Chisel source code

* Automatic configuration and generation of the ILA IP in the FPGA
toolchain

e Automatic expansion and wiring of annotated signals to the top level
of a design using a FIRRTL transform.

* Remote waveform and trigger
setup from the manager
instance

1T
sss-amazon
Berkeley Architecture Research ¥ webservices ‘

BOOM Example

* Debugging an 000 processor is hard
* Throughout this talk, we’ll have examples of FPGA debugging used in BOOM.

e Example from boom/src/main/scala/lsu/dcache.scala
* Debugging a non-blocking data cache hanging after Linux boots

class BoomNonBlockingDCacheModule (outer: BoomNonBlockingDCache) extends LazyModuleImp (outer)
with HasLlHellaCacheParameters

{

implicit val edge = outer.node.edges.out (0)
val (tl out,) = outer.node.out (0)
val io = IO (new BoomDCacheBundle)

FpgaDebug (tl out)

(
FpgaDebug (1i0.req)
FpgaDebug (io.resp)
FpgaDebug (1io0.s1 kill)
FpgaDebug (io.nack)

}

Berkeley Architecture Research 7

Debugging using Integrated Logic Analyzers

Pros: Cons:

e No emulated parts — what you e Requires a full build to modify
see is what’s running on the visible signals/triggers (takes
FPGA several hours)

e FPGA simulation speed - O(MHz) * Limited sampling window size
compared to O(KHz) in software e Consumes FPGA resources
simulation

e Real-time trigger-based

@ Berkeley Architecture Research 8

TraceRV

Out-of-band full instruction execution trace
* Bridge connected to target trace ports
By default, large amount of info wired out of
Rocket/BOOM, per-hart, per-cycle:

* Instruction Address

* [nstruction

* Privilege Level

* Exception/Interrupt Status, Cause
TraceRV can rapidly generate several TB of
data.

N

Trace Port Hart O

Rocket Chip

/
BOOM Chip

e <DMAPCI5\ TracerV
= roost Widget

N\

Trace Port Hart N

£

FAME-1 Transformed Region
FPGA

Berkeley Architecture Research 9

TracerV

e Out-of-Band: profiling does not perturb
execution

» Useful for kernel and hypervisor level cycle-
sensitive profiling
* Examples:
* Co-Optimization of NIC and Network Driver
* Keystone Secure Enclave Project
* High-performance hardware-specific code
(supercomputing?)

* Requires large-scale analytics for insightful
profiling and optimization.

Berkeley Architecture Research

IS
This
Slow

Benchmark Application

Linux

Linux Networking Stack

SimpleNIC Driver

SimpleNIC

RocketChip

10

Trigger Mechanisms

* Full trace files can be very large (100s GB — TB)
* We are usually interested only in a specific region of execution

* TraceRV can be enabled based on in-band and out-of-band triggers
* Program counter
o Unique instruction config_runtime.ini

[tracing]
[]
Cycle count b lomns

* Can use the same trigger for some other |#0 = no trigger

#1 = cycle count trigger

S|mU|at|On OUtpUtS #2 = program counter trigger

* Performance counters #3 = instruction trigger
selector=1

startcycle=0
endcycle=-1

Berkeley Architecture Research

11

Integration with Flame Graphs

* Flame Graph — Open-source profiling visualization tool

* Direct integration with TraceRV traces
e Automated stack unwinding (kernel space)
* Automated Flame-graph generation

Flame Graph
|
|
|
| 1
| i
| |
/ | |
Tje Port Hart 0 _copy_user | [
. [copyout™™ T (EEcOpySUSERII | \
N Rocket Chi i
DMA PCls TracerV / P __co - copy —copym ‘ { =|‘
tttttt Widget . |__skb_datagram_iter | tcp_sendmsg_locked
R / BOOM Chip SKb_copy_datagram_ter tcp_sendmsg ' 1
tep_recvmsg inet_sendmsg | | [|
Trace Port Hart N inet_recvmsg sock_sendmsg __copy_user [|
| sock_read_iter sock_write_iter ey oo I
\] _vfsread s wite | []
vfsread Vfswrite | |l simple_copy_to_iter | __copy_user (| i
: FAME-1 Transformed Region ”'__-_dm{ﬁ—\ —I|-I y
check_syscall_nr [epajdocidler R ‘tep_sendmsg_locked tc..
Host FPGA I - |

Berkeley Architecture Research .

TraceRV

Pros: Cons:
e Qut-of-Band (no impact e Slower simulation
on workload execution) performance (40 MHz)
e SW-centric method e No HW visibility
e Large amounts of data e Large amounts of data

@ Berkeley Architecture Research 13

AutoCounter

e Automated out-of-band counter insertion

* Based on ad-hoc annotations and existing cover-points

* Noi ive RTL ch —
O I nvas |Ve C a nge Host Print
] Synthesis Unit
Cond
. R [f. d Logictgj E(?;ig
untime-conrigurate read rate ot S [Counter] Coumer
ogic ()
Count
Reader To Eth t
IﬁT\ alloc Send L [¢] erne
io.send.req.ready := state === s_idle Controller t-a] tl-d[{data Buffer Network
io.alloc.valid := helper.fire(io.alloc.ready, canSend) send req — F—VJ_
io.alloc.bits.id := xactId send comp <_DIE SoC Memory Interface
io.alloc.bits.count := (1.U << (reqSize - byteAddrBits.U)) recv req :II:}_
tl.a.valid := helper.fire(tl.a.ready, canSend) _l* tl-al tl-d _ h
B e s i R recv comp <_DI._L acts data |Receive| From Ethernet
-a. i : [xacts | Buffer | Network
fromSource = xactId, Writer

toAddress = sendaddr,

lgSize = regSize)._2

cover((state === s_read) && xactBusy.andR && tl.a.ready, "NIC_SEND_XACT_ALL_BUSY", "nic send blocked by lack of transactions")
cover((state === s_read) && !io.alloc.ready && tl.a.ready, "NIC_SEND_BUF_FULL", "nic send blocked by full buffer")

cover(tl.a.valid && !tl.a.ready , "NIC_SEND_MEM_BUSY", "nic send blocked by memory bandwidth")

Berkeley Architecture Research 14

AutoCounter Example

* Example ad-hoc performance counters in the L2 cache

class SinkA (params: InclusiveCacheParameters) extends Module

{

val io = new Bundle {
val req = Decoupled(new FullRequest (params))
val a = Decoupled(new TLBundleA (params.inner.bundle)) .flip
val pb pop = Decoupled(new PutBufferPop (params)).flip

val pb beat = new PutBufferAEntry (params)
}

PerfCounter (io.a.fire(), "1l2 requests", "Number of requests to the first bank of the L2");

* Simle runtime read-rate configuration (config runtime.ini)
* Trade-off visibility/detail and performance

[autocounter]
readrate=1000000

Berkeley Architecture Research

15

AutoCounter Example

* Example AutoCounter output file:

Cycle 2457999999

PerfCounter 12 misses FireSim TestHarness subsystem 12 wrapper 12 mods 0 sourceA: 16872407
PerfCounter 12 requests FireSim TestHarness subsystem 12 wrapper 12 mods 0 sinkA: 45143832

Cycle 2458999999

PerfCounter 12 misses FireSim TestHarness subsystem 12 wrapper 12 mods 0 sourceA: 16873445
PerfCounter 12 requests FireSim TestHarness subsystem 12 wrapper 12 mods 0 sinkA: 45182776

Cycle 2459999999

PerfCounter 12 misses FireSim TestHarness subsystem 12 wrapper 12 mods 0 sourceA: 16873752
PerfCounter 12 requests FireSim TestHarness subsystem 12 wrapper 12 mods 0 sinkA: 45183706

Cycle 2460999999

PerfCounter 12 misses FireSim TestHarness subsystem 12 wrapper 12 mods 0O sourceA: 16874798
PerfCounter 12 requests FireSim TestHarness subsystem 12 wrapper 12 mods 0 sinkA: 45222694

Cycle 2461999999

PerfCounter 12 misses FireSim TestHarness subsystem 12 wrapper 12 mods 0O sourceA: 16874798
PerfCounter 12 requests FireSim TestHarness subsystem 12 wrapper 12 mods 0 sinkA: 45222694

Berkeley Architecture Research 16

Automated Performance Counters

Pros:

e Macro view of execution behavior

e Trigger integration

e Pre-configured cover points, no
RTL interference

e SW-controlled granularity
(tradeoff simulation for read rate)

@ Berkeley Architecture Research

Cons:

e New counters require new FPGA
images

e Simulation performance degradation
depending on read rate and number
of counters

17

Synthesizable Assertions

* Assertions — rapid error checking embedded in HW source code.
e Commonly used in SW Simulation

* Halts the simulation upon a triggered assertion. Represented as a “stop”
statement in FIRRTL

By default, emitted as non-synthesizable SV functions (Sfatal)

class Count extends Module {
/Aspire

e Verification val io = IO(new Bundle {
) val en = Input(Bool
BROOM » Directed tests and a randomized torture generator. val done = gUt(Ut(BC(JC)Ji())
AI’) .open-source out-of-order prc = Verilator/’VCS/FPGA simulation at RTL. 1 trii= 0 tp t(UInt(4.W
resilient low-voltage operation in:i =VCS for post-gl/par simulation. val cntr = Output(UInt(4.W))
: =9 = Speculative 000 pipelines are difficult to get good coverage on. 3) !))
- Need tests that build up a lot of speculative state. // count until 10 when ‘io.en' is high

DO - and platform-level use-cases. At (cntr, done) _ Counter(io‘eny 1@)
= Assertions are king.

SIS io.cntr := cntr
Christopher Celio, Pi-Fengé?h? io.done := done
i¢, David Patterson, and Bori
Krste Asanovic, a/(l) H 0?1 iS;s%mB
‘ // assertion for software simulation
{‘ RISC %SE!BYE@ | ‘I // “cntr' should be less than 10
21 assert(cntr < 10.U)
3
}
From: BROOM: An open-source Out-of-Order processor with resilient low-voltage operation in 28nm CMOS, From: Trillion-Cycle Bug Finding Using FPGA-Accelerated Simulation Donggyu Kim, Christopher Celio,

Christopher Celio, Pi-Feng Chiu, Krste Asanovic, David Patterson and Borivoje Nikolic. HotChip 30, 2018 Sagar Karandikar, David Biancolin, Jonathan Bachrach, Krste Asanovi¢. ADEPT Winter Retreat 2018
Berkeley Architecture Research 18

Synthesizable Assertions

* Synthesizable Assertions on FPGA
* Transform FIRRTL stop statements into synthesizable logic
* Insert combinational logic and signals for the st op condition arguments
* Insert encodings for each assertion (for matching error statements in SW)
* Wire the assertion logic output to the Top-Level

* Generate timing tokens for cycle-exact assertions
Assertion checker records the cycle and halts simulation when assertion is
triggered

(A

-
Top-level Module » > Top-level Module | PR | [7op-level Module

< ®m 9 3
Module A = § Module A 3 g Module A Iﬂ" Assertion
3 2 2g g_g_'_»o Checker

7 3 d o >

stop(a) ._g S

(o]

Berkeley Architecture Research 19

BOOM Example

* Example from boom/src/main/scala/exu/rob.scala

* Assert is the ROB is behaving un-expectedly
* Overwriting a valid entry

invalid ROB entry.")

assert (rob val(rob tail) === false.B, "[rob] overwriting a valid entry.")
assert ((io.enqg uops(w).rob idx >> logZ2Ceill (coreWidth)) === rob tail)
assert (! (io.wb resps(i).valid && MatchBank (GetBankIdx (rob idx)) &&

'rob val (GetRowIdx (rob idx))), "[rob] writeback (" + 1 + ") occurred to an

Berkeley Architecture Research

20

BOOM Example

* How it looks in the UART output (while Linux is booting):

.008000] VFS: Mounted root (ext2 filesystem) on device 253:0.

.008000] devtmpfs: mounted

.008000] Freeing unused kernel memory: 148K

.008000] This architecture does not have kernel memory protection.

mount: mounting sysfs on /sys failed: No such device

Starting syslogd: OK

Starting klogd: OK

Starting mdev...

mdev: /sys/dev: No such file or directory

[id: 1840, module: Rob, path: FireBoom.boom tile 1l.core.rob]

Assertion failed: [rob] writeback (0) occurred to an invalid ROB entry.

at rob.scala:504 assert (! (io.wb resps(i).valid && MatchBank (GetBankIdx (rob idx)) &&

at cycle: 1112250469

O O O O

[
[
[
[

*** FAILED *** (code = 1841) after 1112250485 cycles

time elapsed: 307.8 s, simulation speed = 3.61 MHz It would take ~62 hours to hit
FPGA-Cycles-to-Model-Cycles Ratio (FMR): 2.77 this assertion is SW RTL
Beats available: 2165 . . .

Runs 1112250485 cycles simulation (at 5 KHz sim rate),
[FAIL] FireBoom Test vs. just a few minutes in FireSim

SEED: 1569631756
at cycle 4294967295

Berkeley Architecture Research 21

Synthesizable Printfs

* Research feature presented in DESSERT [1] (together with assertions)
* Enable “software-style” debugging using print f statements

e Convert Chisel printf statements to synthesizable blocks
* Appropriate parsing in simulation bridge
* Including signal values

* Impact on simulation performance depends

int main()

on the frequency of printfs.

printf(“Never more will not to be use pr

* Qutput includes the exact cycle of the
printf event

[} H e I ps m ea S u re Cyc I eS CO u nts betwee n eve nts https://www.deviantart.com/stymOr/art/Bart-Simpson-Programmer-134362686

Berkelev Archi R h [1] Kim, D., Celio, C., Karandikar, S., Biancolin, D., Bachrach, J. and Asanovic, K., DESSERT: Debugging RTL Effectively with State Snapshotting for Error Replays across
erkeliey Arc Itecture Researc Trillions of cycles. The International Conference on Field-Programmable Logic and Applications (FPL), 2018 22

https://www.deviantart.com/stym0r/art/Bart-Simpson-Programmer-134362686

BOOM Example

* Example from boom/src/main/scala/lsu/lsu.scala

* Print a trace of all loads and stores, for verifying memory consistency.

if (MEMTRACE PRINTEF)

{

when (commit store || commit load) {
val uop = Mux (commit store, stg(idx).bits.uop, ldg(idx).bits.uop)
val addr = Mux (commit store, stqg(idx) .bits.addr.bits, 1ldg(idx) .bits.addr.bits)
val stdata = Mux(commit store, stg(idx).bits.data.bits, 0.0U)
val wbdata = Mux(commit store, stqg(idx).bits.debug wb data, 1ldg(idx) .bits.debug wb data)

printf (midas.targetutils.SynthesizePrintf ("MT %x %$x %x %$xX %x %$x %x\n",
io.core.tsc reg, uop.uopc, uop.mem cmd, uop.mem size, addr, stdata, wbdata))

Berkeley Architecture Research

23

Synthesizable Printfs/Assertions

Pros:

e FPGA simulation speed
e Real-time trigger-based

e Consumes small amount of FPGA
resources (compared to ILA)

e Key sighals have pre-written
assertions in re-usable
components/libraries

@ Berkeley Architecture Research

Cons:

e Low visibility: No waveform/state

e Assertions are best added while
writing source RTL rather than
during
“investigative” debugging

24

Dromajo Co-Simulation

* Dromajo — RV64GC emulator
designed for RTL co-simulation

e Can be used to debug BOOM in
FireSim through functional co-
simulation and comparison

e Or any other design with a functional

implementation in Dromajo

* Find functional bugs billions of
cycles into simulations

* Find divergence against functional
golden model

 Dump waveforms for affected signals

Berkeley Architecture Research

[error] EMU PC ffffffe001055d84, DUT PC ffffffe001055d84
[error] EMU INSN 14102973, DUT INSN 14102973

[error] EMU WDATA 000220d6, DUT WDATA 000220d4

[error] EMU MSTATUS a000000a0, DUT MSTATUS 00000000
[error] DUT pending exception -1 pending interrupt -1
[ERROR] Dromajo: Errored during simulation tick with 8191

***% FATLED *** (code = 8191) after 2,356,509,311 cycles
time elapsed: 2740.8 s, simulation speed = 859.79 KHz
FPGA-Cycles-to-Model-Cycles Ratio (FMR): 8.14

Runs 2356509311 cycles

FAIL] FireSim Test

2 billion cycle divergence where receiving an
interrupt during mis-speculation affects
architectural state (EPC)

25

Debugging Co-Simulation

Berkeley Architecture Research

Debugging Using Software RTL Simulation

My FireSim Simulation Is Not Working

Adding/Modifying new
interfaces and endpoints,
modifying simulation models

Modifying internal
simulated target hardware,
no new external endpoints

Target-Level SW Simulator-Level SW
Simulation Simulation

MIDAS-Level SW FPGA-Level SW
Simulation Simulation

Berkeley Architecture Research

27

Debugging Using Software RTL Simulation

Target-Level MIDAS-Level FPGA-Level
Simulation Simulation Simulation
e Software Simulation e Software Simulation e Software Simulation
e Target Design e Target Design e Target Design
Untransformed Transformed by Transformed by
e No Host-FPGA Golden Gate Golden Gate
interfaces * Host-FPGA * Host-FPGA
interfaces/shell interfaces/shell
emulated using simulated by the
abstract models FPGA tools

@ Berkeley Architecture Research 28

Debugging Using Software RTL Simulation

“FAME-1" Transformed RTL Design

Target-Level
SW Simulation <- Resp Queue

RTL Design

Req Queue ->

FPGA Fabric

Berkeley Architecture Research

DRAM

Physical
\YileYe =] yslca

DRAM

Mem
100 Channel

cycle
latency

100ns
latency

30

Debugging Using Software RTL Simulation

“FAME-1" Transformed RTL Design

Abstract

Target-Level Model

SW Simulation <- Resp Queue DRAM

Model
RTL Design

100
cycle
Req Queue -> latency

100ns
latency

FPGA Fabric

Berkeley Architecture Research 31

Debugging Using Software RTL Simulation

“FAME-1" Transformed RTL Design

A Jstract

Target-Level Nodel

SW Simulation <- Resp Queue DRAM

Model
RTL Design

100
cycle
Req Queue -> latency

100ns
latency

FPGA Fabric

Berkeley Architecture Research 32

Debugging Using Software RTL Simulation

I T

Target
Target
MIDAS
MIDAS
FPGA

@ Berkeley Architecture Research

On
Off
On
On

~5 kHz
~1 kHz
~4 kHz
~3 kHz
~2 Hz

~5 kHz
~5 kHz
~2 kHz
~1 kHz
N/A

N/A
N/A
N/A
~0.5 Hz

33

The FireSim Vision: Speed and Visibility

* High-performance simulation
 Full application workloads
* Tunable visibility & resolution

* Unique data-based insights

Berkeley Architecture Research 35

Interactive Example

Berkeley Architecture Research

Hands-on Synthesizable Printf Example

* We would like to observe when the SHA3 algorithm completes a
round, and some details about the round. This is represented by the
following code segment (https://github.com/uch-
bar/sha3/blob/master/src/main/scala/dpath.scala#L103)

when (1o0.absorb) {
state := state
when (1o.aindex < UInt (round size words)) {
state ((10.aindex%UInt (5)) *UInt (5)+ (io.aindex/UInt(5))) :=
state((io.aindex%UInt (5)) *UInt (5)+ (io.aindex/UInt(5))) ~ i1o.message in

Berkeley Architecture Research

37

https://github.com/ucb-bar/sha3/blob/master/src/main/scala/dpath.scala

Hands-on Synthesizable Printf Example

* We would like to observe when the SHA3 algorithm completes a
round, and some details about the round. This is represented by the
following code segment (https://github.com/uch-
bar/sha3/blob/master/src/main/scala/dpath.scala#L103)

when (1io.absorb) {
state := state
1f(p(Sha3PrintfEnable)) {
printf (midas.targetutils.SynthesizePrintf ("SHA3 finished an iteration with index %d and
message %x\n", ilo.aindex, io.message 1in))
}
when (1o.aindex < UInt (round size words)) {
state((1i0.aindex%UInt (5)) *UInt (5)+ (io.aindex/UInt(5))) :=
state((io.aindex%UInt (5)) *UInt (5)+ (io.aindex/UInt(5))) ~ io.message in
}
}

Berkeley Architecture Research 38

https://github.com/ucb-bar/sha3/blob/master/src/main/scala/dpath.scala

Hands-on Synthesizable Printf Example

* We use the following build recipe for this FPGA image

(|n deploy/config_build_recipes.ini)|S:

[firesim-singlecore-sha3-no-nic-12-11c4mb-ddr3-print]

DESIGN=FireSim

TARGET CONFIG=

DDR3FRFCFSLLC4MB WithDefaultFireSimBridges WithFireSimTestChipConfigTweaks chipyard.Sha3RocketConfig
PLATFORM CONFIG=WithPrintfSynthesis FI120MHz BaseFlConfig

instancetype= zld.2xlarge

deploytriplet=None

Berkeley Architecture Research 39

Hands-on Synthesizable Printf Example

Update our workload to copy the output printf file:
e vim workloads/sha3-bare-rocc.json
* Add the synthesized-prints.out to oursimulation output

"benchmark name": "sha3-bare-rocc",
"common simulation outputs": [
"uartlog", "synthesized-prints.out"

1,

"common bootbinary": "../../../../../generators/sha3/software/tests/bare/sha3-rocc.riscv",
"common rootfs": "../../../../../software/firemarshal/boards/default/installers/firesim/dummy.rootfs"}

Berkeley Architecture Research

Hands-on Synthesizable Printf Example

e Setup the
firesim/deploy/config_runtime.ini file:
* Select the AGFI that was synthesized with the
printf
* Select the bare-metal SHA3 test workload

* Boot the simulation by running the
following sequence of commands:

il 5 firesim infrasetup

e This should take about 10 minutes

* S firesim runworkload

e This should take about 2 minutes

Berkeley Architecture Research

f1l lexlarges=0
m4 loxlarges=0
f1l 4xlarges=0
f1l 2xlarges=1

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=no net config
no net num nodes=1
linklatency=6405
switchinglatency=10
netbandwidth=200
profileinterval=-1

defaulthwconfig=firesim-singlecore-
sha3-no-nic-12-11c4mb-ddr3-print

[workload]
workloadname=sha3-bare-rocc.json

Hands-on Synthesizable Printf Example

Output file in deploy/results-workload/<timestamp>-sha3-bare-rocc/sha3-bare-rocc0/synthesized-prints.out

Berkeley Architect

CYCLE: 36086158 SHA3 finished an iteration with index 0 and message 0000000000000000
CYCLE: 36086159 SHA3 finished an iteration with index 1 and message 0000000000000000
CYCLE: 36086160 SHA3 finished an iteration with index 2 and message 0000000000000000
CYCLE: 36086161 SHA3 finished an iteration with index 3 and message 0000000000000000
CYCLE: 36086162 SHA3 finished an iteration with index 4 and message 0000000000000000
CYCLE: 36086163 SHA3 finished an iteration with index 5 and message 0000000000000000
CYCLE: 36086164 SHA3 finished an iteration with index 6 and message 0000000000000000
CYCLE: 36086165 SHA3 finished an iteration with index 7 and message 0000000000000000
CYCLE: 36086166 SHA3 finished an iteration with index 8 and message 0000000000000000
CYCLE: 36086167 SHA3 finished an iteration with index 9 and message 0000000000000000
CYCLE: 36086168 SHA3 finished an iteration with index 10 and message 0000000000000000
CYCLE: 36086169 SHA3 finished an iteration with index 11 and message 0000000000000000
CYCLE: 36086170 SHA3 finished an iteration with index 12 and message 0000000000000000
CYCLE: 36086171 SHA3 finished an iteration with index 13 and message 0000000000000000
CYCLE: 36086172 SHA3 finished an iteration with index 14 and message 0000000000000000
CYCLE: 36086173 SHA3 finished an iteration with index 15 and message 0000000000000000
CYCLE: 36086174 SHA3 finished an iteration with index 16 and message 0000000000000000
CYCLE: 36086175 SHA3 finished an iteration with index 17 and message 0000000000000000
CYCLE: 36086203 SHA3 finished an iteration with index 0 and message 0000000000000000
CYCLE: 36086204 SHA3 finished an iteration with index 1 and message 0006000000000000
CYCLE: 36086205 SHA3 finished an iteration with index 2 and message 0000000000000000
CYCLE: 36086206 SHA3 finished an iteration with index 3 and message 0000000000000000
CYCLE: 36086207 SHA3 finished an iteration with index 4 and message 0000000000000000
re-Research

42

Hands-on Synthesizable Printf Example

Don’t forget to terminate your runfarms (otherwise, we are going to
pay for a lot of FPGA time)

S firesim terminaterunfarm

Type yes at the prompt to confirm

Berkeley Architecture Research 43

Summary

* Debugging Using Software Simulation (docs)

e Target-Level
e MIDAS-Level
e FPGA-Level

* Debugging Using Integrated Logic Analyzers (docs)

* Advanced Debugging and Profiling Features
* TracerV (docs)
* Assertion and Print Synthesis (docs)
* AutoCounter (docs)

* FireSim Debugging and Profiling Future Vision

Berkeley Architecture Research 44

https://docs.fires.im/en/latest/Advanced-Usage/Debugging-in-Software/index.html
https://docs.fires.im/en/latest/Advanced-Usage/Debugging-and-Profiling-on-FPGA/Debugging-Hardware-Using-ILA.html
https://docs.fires.im/en/latest/Advanced-Usage/Debugging-and-Profiling-on-FPGA/TracerV.html
https://docs.fires.im/en/latest/Advanced-Usage/Debugging-and-Profiling-on-FPGA/Printf-Synthesis.html
https://docs.fires.im/en/latest/Advanced-Usage/Debugging-and-Profiling-on-FPGA/AutoCounter.html
https://docs.fires.im/

