
A Brief Tour of FireSim:
The Manager & Compiler;

Building an FPGA image

MICRO 2021 Tutorial

Speaker: David Biancolin

https://fires.im

@firesimproject

Agenda: What will we cover?

1) The Compiler → Golden Gate

• Invoke it on example RTL

• “Simulate the simulator” using Verilator

2) The Manager→ firesim

• Explain how it’s configured

•Demonstrate how it’s used to build bitstreams

2

Where is FireSim in Chipyard?

With the software RTL simulators!

~/chipyard/sims/firesim

→We will reference this as $FDIR

3

Example commands:

4

$ cd $FDIR

$ ls

FireSim’s Directory Structure

sim/

• Golden Gate lives here

• Scala & C++ sources for additional FireSim models

• Make-based build system to invoke Golden Gate

deploy/

• Manager lives here

• FireSim workload definitions

platforms/ → AWS FPGA/Vivado project definitions

sw/ → target software & FireMarshal (more on this later)

5

Agenda: What will we cover?

1) The Compiler → “Golden Gate”

• Invoke it on example RTL

• “Simulate the simulator” using Verilator

2) The Manager → firesim

• Explain how it’s configured

•Demonstrate how it’s used to build bitstreams

6

Example commands:

7

$ cd $FDIR/sim

$ make DESIGN=FireSim

An Analogy

• Golden Gate is like Verilator but for FPGA-accelerated simulation

Verilator generates C++ sources to simulate your design.

→ Compile and run on a CPU-host

Golden Gate generates C++ & Verilog to simulate your design.

→ Compile and run on a hybrid CPU & FPGA host

8

Golden Gate Compiler

9

Inputs:

• FIRRTL & annos from a Chipyard generator

• Compiler configuration

→ Produces sources for a simulator that are:

• deterministic

• support co-simulation of software models

• area-optimized to fit more on the FPGA

Plug: IEEE MICRO Resource Optimizations

10

• Design doesn’t fit?
• Can’t partition?
→Optimize!

IEEE Micro Punchline:
• Can fit 2x – 8x more BOOM cores on F1 FPGA
→ think: “–Os for FireSim”

Interacting with Golden Gate via Make

• Make invokes Golden Gate with three variables (the “Tuple”):

DESIGN :

• The top level module →MODEL in Chipyard

TARGET_CONFIG:

• The generator’s config → CONFIG in Chipyard

PLATFORM_CONFIG:

• Compiler options passed to Golden Gate

11

Example commands:

12

$ cd $FDIR/sim/generated-src/f1

here you’ll find output directories for all builds

$ cd <any-directory-here>

$ ls

Inspecting the Outputs

<long-name>.fir & <long-name>.anno.json

• Target’s FIRRTL & annotations

FPGATop.v

• The compiled simulator

$DESIGN-const.h

• Simulator’s memory map

runtime.conf

• A default runtime configuration for simulation

Note: these names will change in 1.13 (see docs)

13

Agenda: What will we cover?

1) The Compiler → Golden Gate

• Invoke it on example RTL

• Simulate the output in an RTL simulator

2) The Manager → firesim

• Explain how it’s configured

•Demonstrate how it’s used to build bitstreams

14

Background Terminology

15

“AGFI”: FPGA
Bitstream for F1

FPGAs

Using the firesim manager command line

• sourcing $FDIR/sourceme-f1-manager.sh puts firesim on
your path

• can call firesim from anywhere on the instance

• it will always run from the directory:

$FDIR/deploy/

After a fresh clone, need to call:

firesim managerinit

16

Example commands:

17

$ cd $FDIR/deploy

$ ls

Configuring the Manager. 4 files in firesim/deploy/

18

config_build_recipes.ini config_build.ini config_hwdb.ini config_runtime.ini

Configuring a Build

19

config_build_recipes.ini config_build.ini config_hwdb.ini config_runtime.ini

Anatomy of a Build Recipe

Consists of:

• A label

• The tuple from before

• The EC2 instance type you’d like to use

20

Defining a Build Job: config_build.ini

21

Consists of:

• More instance configurations

• A list of recipes you’d like to batch out
to a build farm

Once you’re done with builds:

• A list of recipes you’d like to share
with other users

Running builds

• Once we’ve configured what we want to build,
let’s build it

$ firesim buildafi

• This completely automates the process. For
each design, in-parallel:
• Launch a build instance
• Generate target RTL & invokes Golden Gate
• Ship infrastructure to build instances, run Vivado

FPGA builds in parallel
• Collect results back onto manager instance

• $FDIR/deploy/results-build/<TIMESTAMP>-<tuple>/
• Email you the entry to put into config_hwdb.ini
• Terminate the build instance

22

Example commands:

23

$ cd $FDIR/deploy

$ cd results-build/<name>/cl_firesim

$ ls

Captured Build Outputs

design/

• The source files for the build;

build/scripts/<timestamp>.vivado.log

• Log of the entire vivado build process

build/reports/

• Timing and utilization reports from various stages

build/checkpoints/

• Design checkpoints (*.dcp); can reopen in Vivado to debug a build

24

Example commands:

25

$ cd $FDIR/deploy

$ cat built-hwdb-entries/* >> config_hwdb.ini

$ tail config_hwdb.ini

Anatomy of a HWDB Entry

• Same label as before

• The FPGA image

Hooks to change:

• Software models

• Runtime arguments

→Without FPGA recompilation

26

Simulating the Simulator (Meta-simulation)

• Can simulate Golden Gate’s output without doing an FPGA-build

• Runs with all the same models you’d have on the FPGA

• Should produce target-cycle-exact behavior as an FPGA simulation

→ outputs in output/f1/<tuple>

27

Summary

• Don’t fret if you didn’t catch everything, everything we showed you
today is documented in excruciating detail at http://docs.fires.im

• We learned how to:
• Build FireSim FPGA images for a set of targets

• http://docs.fires.im/en/latest/Building-a-FireSim-AFI.html

28

https://docs.fires.im/
http://docs.fires.im/en/latest/Building-a-FireSim-AFI.html

Backup Slides

29

