
James Dunn
UC Berkeley
dunn@eecs.berkeley.edu
Slides adapted from Abraham Gonzalez

FPGA Prototyping

Presenter
Presentation Notes
Hello, my name is James Dunn, and in this presentation I will be detailing Chipyard’s FPGA prototyping flow.

mailto:dunn@eecs.berkeley.edu

Motivation
• FPGAs are a powerful tool!
• Many people have off the shelf FPGAs
• Chipyard use cases for FPGAs

• HW simulation – Use FireSim!
• Interact with the real-world peripherals
• Tapeout bringup platform Chipyard Tapeout

New RTL
FPGA prototype running

Linux + interfacing w/
real world peripherals

Presenter
Presentation Notes
So what motivated us to create an FPGA prototyping flow in Chipyard?

Well, Chipyard’s goal - in addition to providing a framework to generate and simulate RTL for an SoC - is to get that RTL onto to hardware.

We have an existing VLSI framework, HAMMER, which Harrison presented, already built into Chipyard that deals with getting the SoC design onto Silicon and taped out.

We felt that being able to map the SoC design onto FPGA fabric is also an important use case. FPGAs are powerful in terms of the fabric size, IO, and peripherals they offer, and are also accessible.

This flow enables prototyping a Chipyard-generated design before taping out, for functional verification in a real testbed, hooked up to real peripherals, in real time. Once verified, the same RTL can be pushed through the Chipyard HAMMER flow to tape out.

[pause]

I’ll take a moment just to clarify the difference between this prototyping flow and FireSim, which is also an FPGA component of Chipyard.

FireSim is for creating FPGA-accelerated hardware simulations of a Chipyard SoC design. This simulation is hardware-accelerated and cycle-accurate, but not real-time.

This FPGA prototyping flow directly maps the SoC design onto FPGA fabric. This is not a cycle-by-cycle simulation, but real-time, and this SoC mapped to the fabric can interface with peripherals over the FPGA dev board’s IO.

One final use case for this flow is to generate and map a design to an FPGA that acts as a host for bringup of another SoC. The host design mapped to the FPGA runs the frontend server - or FESVR - libraries that allow it to communicate with the device under test to run programs and debug. An example of what that looks like is shown on the right of the slide. The FPGA in the left of the image is running a chipyard-generated core that is exercising our taped out chip over a variety of interfaces. This has become a commonly used bringup platform for chips taped out at Berkeley.

Goals
• Understand the basics of generating a bitstream
• Overview of the two supported platforms
• Example: Build and run Linux on a VCU118 FPGA w/ BOOM!

• Build a pre-configured BOOM bitstream
• Build Linux binary and start the prototype run
• Interact with Linux!

Presenter
Presentation Notes
So those were the motivations and goals for the FPGA prototyping platform – what are the goals for this presentation?

We will go through the basics of using this flow to generate a bitstream from a Chipyard design.

We will talk about the two currently supported FPGA platforms,

And we will go through an example together of mapping a BOOM design to the fabric on a Xilinx VCU118 development board, and then building a Linux binary that will run on that BOOM design.

How things will work

Interactive Slide
“Follow Along”

Explanation Slide
“What’s happening?”

Presenter
Presentation Notes
This is just a note that we will have slides that are interactive, which means opening up a file or running terminal commands. Those slides will have windows showing the content of a file or commands to run. I will let listeners know when action is required.

Interspersed, we will have explanation slides that go into more depth on what you are actually doing in the interactive slides.

How things will work

Terminal Section Inside-a-File Section

command 1
> echo “Chipyard Rules!”

command 2
> do_this arg1 arg2

// SOME COMMENT HERE
class SmallBoomConfig extends Config(
new WithTop ++
new WithBootROM ++
new boom.common.WithSmallBooms ++
new boom.common.WithNBoomCores(1) ++
new freechips.rocketchip.system.BaseConfig)

Presenter
Presentation Notes
Of the windows in an interactive slide, blue windows indicate a terminal, and gray windows indicate file content in a text editor.

Getting Started

Presenter
Presentation Notes
With that, let’s get started.

Prerequisites
• Vivado installed and on your PATH

• Tested with 2018.3 but should work for some other versions
• Fully setup Chipyard

• All submodules initialized
• A toolchain installed

• Basic understanding of Vivado
• How to load a bitstream
• How to connect to an FPGA

7

Presenter
Presentation Notes
These are the prerequisites needed for following along with the tutorial.

You’ll first need Vivado installed, in your path, and licensed.

I’m using version 2019.2, but the tutorial should work for later Vivado releases.

And a note on licensing: licenses are required to support the Ultrascale FPGAs of the VCU118. If you do not have a license, you won’t be able to generate a bitstream for that FPGA with this flow. However the Arty board that we also support does not require any license.

Another prerequisite is a fully-setup Chipyard. This means having the toolchain installed , environment setup file sourced, and all submodules initialized. You can find instructions for doing all of this in our documentation.

Finally you will need a basic understanding of Vivado. For this tutorial, all that means is being comfortable using Vivado’s hardware manager to connect to your FPGA device and load a bitstream onto it.

Example

8

return to Chipyard
> cd ~/chipyard
> ls

setup the repo to build fpga images
> ./scripts/init-fpga.sh

Wrapper around `git submodule init`
to clone the necessary FPGA

collateral

Presenter
Presentation Notes
Here’s our first interactive slide. Let’s go to our terminal and navigate to where we cloned and set up Chipyard.

In addition to initializing the base submodules in your Chipyard setup, we want to run this FPGA initialization script to clone necessary collateral. Go ahead and run this command from the root of the Chipyard directory tree.

Directory Structure
chipyard/

generators/
rocket-chip/
sha3/

sims/
verilator/

software/
firemarshal/

fpga/
fpga-shells/
src/
Makefile

9

Our library of Chisel generators

Our wrappers + FPGA test harnesses + Make area

SiFive FPGA shell collateral

Configs + Harnesses

Presenter
Presentation Notes
And now that we’ve ran that FPGA initialization script, here’s what the directory tree should look like.

Within the top-level Chipyard directory, we have the “generators” directory, which as its name suggests, contains our library of Chisel generators, as well as any generators you write.

At that same level is an “fpga” directory.

Within this is a sub-directory called fpga-shells. fpga-shells is maintained by SiFive with UCB student contributions, and contains the TestHarness wrappers and blackboxes for FPGA vendor IP.

Elsewhere in the “fpga” directory is the “src” folder, where all of the configs, harnesses, and binders live that tell Chipyard how to build and connect up the wrappers and harnesses from fpga-shells.

Finally, we have Makefiles that build the design and call vivado to create a bitstream.

FPGA-Shells
• Provided by SiFive

• But extended and built upon by ADEPT students
• Used in the SiFive Freedom platform

• Connects Rocket Chip SoCs to FPGAs
• Contains board and peripheral support
• Current FPGA support

• VCU118
• Arty A7

10

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/

tools/
chisel/
firrtl/

tests/
build.sbt

Presenter
Presentation Notes
This explanation slide just elaborates more on the fpga-shells repo.

Fpga-shells essentially provides the wrappers and harnesses that connect the FPGA board’s IP blocks, which are specified in fpga-shells as Chisel blackboxes, to the Chipyard-generated SoC.

SiFive created this repository originally for their Freedom FPGA platforms, and they maintain it, but it has been extended by UC Berkeley students.

Of the boards included in fpga-shells, Chipyard supports two: the Xilinx VCU118 and the Xilinx Arty A7. However, we are working on support of additional boards.

Chipyard supported boards

11

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/

tools/
chisel/
firrtl/

tests/
build.sbt

Xilinx Arty Xilinx VCU118

• Artix7 FPGA fits TinyRocketConfig
• UART, JTAG, QSPI flash for

BootROM
• No backing DDR (yet), so does not

boot Linux

• Ultrascale FPGA fits large
Rocket and BOOM configs

▪ UART, JTAG, DDR backing
memory, SDCard boot BootROM

▪ Boots Linux

Presenter
Presentation Notes
This slide shows what peripherals and configurations are currently supported for each of those two boards.

The Xilinx Arty is a small, $100 dev board with an Artix 7. This is a great, accessible board for embedded development. The supported peripherals are UART, JTAG, and QSPI flash for a BootRom. We are still working on getting backing DDR support so that it can boot Linux. It easily fits a TinyRocketConfig and probably larger configurations.

The Xilinx VCU118 contains an FPGA with far more fabric, suitable for large Rocket and BOOM configs. The peripherals we support on this board are UART, JTAG, DDR backing memory, and an SDCard for the BootROM. Because of the DDR support, this board boots Linux, and that’s actually what we’ll be doing together in this tutorial.

Build a VCU118 bitstream

12

Presenter
Presentation Notes
So let’s build this bitstream.

Bitstreams
• Building a bitstream is similar to building a simulator

binary in `sims/*` but in `fpga/`
• Converts Chisel to Verilog
• Runs Verilog through Vivado to create a bitstream

• Target a specific configuration + FPGA

13

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/

tools/
chisel/
firrtl/

tests/
build.sbt

build the BOOM config bitstream for VCU118
> make SUB_PROJECT=vcu118 CONFIG=BoomVCU118Config
bitstream

Presenter
Presentation Notes
We have a make target similar to the one in the sims directory for building an RTL simulation binary, but instead for running the FPGA flow to build a bitstream.

This make target runs through the full flow, including elaborating Chisel for your SoC design to Verilog, and pushing that Verilog through the Vivado tools to get a bitstream.

In the make command, we have variables for SUB_PROJECT, which is the FPGA that you want to build for, in our case the vcu118. There is also a CONFIG variable specifying the configuration for your Chipyard SoC design. Please note that building a Chipyard design for an FPGA requires an associated FPGA-specific config, in our case BoomVCU118Config. Feel free to look at different FPGA Configs and create your own.

So, back to our terminal window, we should be in the “fpga” directory, and within we will run this command: make with the “SUB_PROJECT” set to “vcu118”, “CONFIG” set to “BoomVCU118Config” and the “bitstream” make target.

Bitstreams
• Building a bitstream is similar to building a simulator

binary in `sims/*` but in `fpga/`
• Converts Chisel to Verilog
• Runs Verilog through Vivado to create a bitstream

• Target a specific configuration + FPGA

14

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/

tools/
chisel/
firrtl/

tests/
build.sbt

build the BOOM config bitstream for VCU118
> make SUB_PROJECT=vcu118 CONFIG=BoomVCU118Config
bitstream

This will take a loooong time! It is
generating the Verilog, and passing it to

Vivado to create the bitstream

Presenter
Presentation Notes
This is unfortunately going to take a very long time! It’s a rather large Chipyard SoC design, and Vivado needs to synthesize and place-and-route it.

In the meantime…

15

Presenter
Presentation Notes
So while make works its way through the prototyping flow, let’s take a look at how it works.

Anatomy of an FPGA prototype

16

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/main/scala/vcu118/
Configs.scala

tools/
chisel/
firrtl/

tests/
build.sbt

FPGA Test Harness
ChipTop

UART HarnessBinder

I2C HarnessBinder

SPI HarnessBinder

UART
IOBinder

I2C
IOBinder

SPI
IOBinder

DigitalTopFPGA UART Port

FPGA I2C Port

FPGA SPI Port

• HarnessBinders connect ChipTop IOs to FPGA
specific ports given by FPGA-Shells

• TestHarness is associated with FPGA platform

Presenter
Presentation Notes
If from the fpga directory you navigate to src/main/scala/vcu118, you’ll see scala files for a TestHarness, HarnessBinders, and IOBinders. The block diagram shows how these fit together.

In Chipyard’s hierarchy, there is a DigtalTop, ChipTop, and TestHarness. Your DigitalTop and its constituent blocks are described by your Config. The IO binders and Harness Binders bridge the gap between the IO of this DigitalTop and your TestHarness collateral. IO and Harness Binders are also mixed in by your Config.

Here, there are Harness and IO Binders for UART, SPI, and I2C blocks that need to be broken out to a port on the FPGA dev board.

The TestHarness in /src/main/scala/vcu118 extends the TestHarness in fpga-shells for a particular FPGA dev board. As mentioned earlier, the fpga-shells TestHarness interfaces IOs at the TestHarness level with ports on the FPGA.

For example, the SPI IO and HarnessBinders connect the SPI block of your DigitalTop, to a SPI peripheral on the FPGA like an SD card, and also generate any collateral needed as part of this plumbing.

View of the config

17

class WithVCU118Tweaks extends Config(
new WithUART ++
new WithSPISDCard ++
new WithDDRMem ++
new WithUARTIOPassthrough ++
new WithSPIIOPassthrough ++
new WithTLIOPassthrough ++
new WithDefaultPeripherals ++
new chipyard.config.WithTLBackingMemory ++
new WithSystemModifications ++
new chipyard.config.WithNoDebug ++
new freechips.rocketchip.subsystem.WithoutTLMonitors ++
new freechips.rocketchip.subsystem.WithNMemoryChannels(1))

class BoomVCU118Config extends Config(
new WithFPGAFrequency(50) ++
new WithVCU118Tweaks ++
new chipyard.MegaBoomConfig)

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/main/scala/vcu118/
Configs.scala

tools/
chisel/
firrtl/

tests/
build.sbt

Default Chipyard configuration

Presenter
Presentation Notes
I mentioned that your DigitalTop is described by your Config, as well as which binders to include.

If from the fpga directory you open src/main/scala/vcu118/Configs.scala, you can see how the configuration for the VCU118 looks.

In the class BoomVCU118Config, we include a default Chipyard MegaBoomConfig fragment, because we want a BOOM core on our FPGA.

View of the config

18

class WithVCU118Tweaks extends Config(
new WithUART ++
new WithSPISDCard ++
new WithDDRMem ++
new WithUARTIOPassthrough ++
new WithSPIIOPassthrough ++
new WithTLIOPassthrough ++
new WithDefaultPeripherals ++
new chipyard.config.WithTLBackingMemory ++
new WithSystemModifications ++
new chipyard.config.WithNoDebug ++
new freechips.rocketchip.subsystem.WithoutTLMonitors ++
new freechips.rocketchip.subsystem.WithNMemoryChannels(1))

class BoomVCU118Config extends Config(
new WithFPGAFrequency(50) ++
new WithVCU118Tweaks ++
new chipyard.MegaBoomConfig)

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/main/scala/vcu118/
Configs.scala

tools/
chisel/
firrtl/

tests/
build.sbt

Set FPGA frequency in MHz

Presenter
Presentation Notes
We can also use a config fragment to set the frequency that we want our BOOM core to run at on the FPGA.

Under the hood, this will configure the IP block for the FPGA’s PLL to output your desired frequency, by way of fpga-shells.

View of the config

19

class WithVCU118Tweaks extends Config(
new WithUART ++
new WithSPISDCard ++
new WithDDRMem ++
new WithUARTIOPassthrough ++
new WithSPIIOPassthrough ++
new WithTLIOPassthrough ++
new WithDefaultPeripherals ++
new chipyard.config.WithTLBackingMemory ++
new WithSystemModifications ++
new chipyard.config.WithNoDebug ++
new freechips.rocketchip.subsystem.WithoutTLMonitors ++
new freechips.rocketchip.subsystem.WithNMemoryChannels(1))

class BoomVCU118Config extends Config(
new WithFPGAFrequency(50) ++
new WithVCU118Tweaks ++
new chipyard.MegaBoomConfig)

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/main/scala/vcu118/
Configs.scala

tools/
chisel/
firrtl/

tests/
build.sbtLink this configuration with the

upper configuration fragment

Presenter
Presentation Notes
Finally, BoomVCU118Config includes the WithVCU118Tweaks config fragment. Let’s take a look at what that includes.

View of the config

20

class WithVCU118Tweaks extends Config(
new WithUART ++
new WithSPISDCard ++
new WithDDRMem ++
new WithUARTIOPassthrough ++
new WithSPIIOPassthrough ++
new WithTLIOPassthrough ++
new WithDefaultPeripherals ++
new chipyard.config.WithTLBackingMemory ++
new WithSystemModifications ++
new chipyard.config.WithNoDebug ++
new freechips.rocketchip.subsystem.WithoutTLMonitors ++
new freechips.rocketchip.subsystem.WithNMemoryChannels(1))

class BoomVCU118Config extends Config(
new WithFPGAFrequency(50) ++
new WithVCU118Tweaks ++
new chipyard.MegaBoomConfig)

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/main/scala/vcu118/
Configs.scala

tools/
chisel/
firrtl/

tests/
build.sbt

Add IOBinders

Presenter
Presentation Notes
Configs also specify which Harness and IO Binders to include, to route signals from of the DigitalTop to the FPGA’s ports.

The highlighted IOBinders pass through IOs from DigitalTop to Chiptop for UART, SPI, and DDR, which is a TileLink peripheral.

View of the config

21

class WithVCU118Tweaks extends Config(
new WithUART ++
new WithSPISDCard ++
new WithDDRMem ++
new WithUARTIOPassthrough ++
new WithSPIIOPassthrough ++
new WithTLIOPassthrough ++
new WithDefaultPeripherals ++
new chipyard.config.WithTLBackingMemory ++
new WithSystemModifications ++
new chipyard.config.WithNoDebug ++
new freechips.rocketchip.subsystem.WithoutTLMonitors ++
new freechips.rocketchip.subsystem.WithNMemoryChannels(1))

class BoomVCU118Config extends Config(
new WithFPGAFrequency(50) ++
new WithVCU118Tweaks ++
new chipyard.MegaBoomConfig)

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/main/scala/vcu118/
Configs.scala

tools/
chisel/
firrtl/

tests/
build.sbt

Add HarnessBinders

Presenter
Presentation Notes
To route the signals for these peripherals out to the TestHarness, we include their HarnessBinders.

I won’t go into the details of the Harness and IO binders themselves, but you can find more information in the Chipyard documentation.

View of the config

22

class WithVCU118Tweaks extends Config(
new WithUART ++
new WithSPISDCard ++
new WithDDRMem ++
new WithUARTIOPassthrough ++
new WithSPIIOPassthrough ++
new WithTLIOPassthrough ++
new WithDefaultPeripherals ++
new chipyard.config.WithTLBackingMemory ++
new WithSystemModifications ++
new chipyard.config.WithNoDebug ++
new freechips.rocketchip.subsystem.WithoutTLMonitors ++
new freechips.rocketchip.subsystem.WithNMemoryChannels(1))

class BoomVCU118Config extends Config(
new WithFPGAFrequency(50) ++
new WithVCU118Tweaks ++
new chipyard.MegaBoomConfig)

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/main/scala/vcu118/
Configs.scala

tools/
chisel/
firrtl/

tests/
build.sbt

Setup params for UART/SPI
peripherals and DDR

Presenter
Presentation Notes
These config fragments setup the parameters for UART, SPI, and DDR.

View of the config

23

class WithVCU118Tweaks extends Config(
new WithUART ++
new WithSPISDCard ++
new WithDDRMem ++
new WithUARTIOPassthrough ++
new WithSPIIOPassthrough ++
new WithTLIOPassthrough ++
new WithDefaultPeripherals ++
new chipyard.config.WithTLBackingMemory ++
new WithSystemModifications ++
new chipyard.config.WithNoDebug ++
new freechips.rocketchip.subsystem.WithoutTLMonitors ++
new freechips.rocketchip.subsystem.WithNMemoryChannels(1))

class BoomVCU118Config extends Config(
new WithFPGAFrequency(50) ++
new WithVCU118Tweaks ++
new chipyard.MegaBoomConfig)

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/main/scala/vcu118/
Configs.scala

tools/
chisel/
firrtl/

tests/
build.sbt

Setup buses, use SDCard
bringup bootrom, set
memory size, and more

Presenter
Presentation Notes
And finally, these config fragments setup other VCU118-specific parameters for the DDR, backing memory bus, and bootrom.

Building Linux for FPGA prototypes

24

Presenter
Presentation Notes
Let’s check back in on our build. It looks like it’s still going.

Now that we’ve talked about hardware, let’s talk about the software side of things. I mentioned that our VCU118 FPGA with a BOOM soft core and backing DDR can boot Linux.

Using FireMarshal to build Linux
• Later in the tutorial we will go into more depth on

FireMarshal
• A unified workload generation tool used across Chipyard

25

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/

software/
firemarshal/

tests/
build.sbt

navigate to firemarshal (assuming pre-setup)
> cd chipyard/software/firemarshal

configure firemarshal for fpga prototypes
> echo "board-dir : 'boards/prototype'" > marshal-config.yaml

build linux with initramfs
> ./marshal -v -d build br-base.json

Presenter
Presentation Notes
We have developed a tool called FireMarshal that builds Linux workload binaries for FireSim simulations, as well as local FPGA prototypes.

Later in the tutorial session, Nathan will go in-depth on FireMarshal.

For now, let’s use it to build a Linux binary that we can boot from.

While the bitstream is building, you can open up a new terminal window and navigate through the directory tree on the right to software/firemarshal.

Run the second command to configure firemarshal to build the workload for local FPGA prototypes.

Finally, in the third command we run marshal to build a basic buildroot Linux image..

Using FireMarshal to build Linux
• Later in the tutorial we will go into more depth on

FireMarshal
• A unified workload generation tool used across Chipyard

26

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/

software/
firemarshal/

tests/
build.sbt

navigate to firemarshal (assuming pre-setup)
> cd chipyard/software/firemarshal

configure firemarshal for fpga prototypes
> echo "board-dir : 'boards/prototype'" > marshal-config.yaml

build linux with initramfs
> ./marshal -v -d build br-base.json

> ls images/

All collateral will be located in the
`images/` area of the `firemarshal/`

directory

Presenter
Presentation Notes
Once marshal finishes, the Linux image will be located in the images directory.

Putting Linux onto VCU118 SDCard
• By default the VCU118 platform loads binaries from a

PMOD SDCard
• We need to flatten (i.e. remove the DRAM offset) of

the output binary before loading it into SDCard

27

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/

software/
firemarshal/

tests/
build.sbt

flatten output linux binary to load on SDCard
> ./marshal -v -d install –t prototype br-base.json

Presenter
Presentation Notes
As we saw in the earlier VCU118 configuration, we are set up to boot from an SD card.

This SD card connects to the FPGA’s PMOD interface using an adapter like the one shown.

All we need to do is get our Linux binary on the SD card, plug it into the adapter, and the adapter into the PMOD header of our VCU118.

But before we can put the binary on the SD card, we need to use marshal’s install command to configure it for installation on our prototype platform.

In our case, the “install” command targeting the prototyping platform removes DRAM offset in the Linux binary [why?].

With that, we’re almost ready to load our binary onto the SD card.

Putting Linux onto VCU118 SDCard

28

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/

software/
firemarshal/

tests/
build.sbt

• Next, we need to put the binary onto a pre-setup
SDCard

• Contains 2 partitions; one to store the binary, one to store
a filesystem to access from the DUT

• SDCard setup instructions:
chipyard.readthedocs.io/en/1.5.0/Prototyping/VCU118.html
#setting-up-the-sdcard

move flattened binary to SDCard 1st partition (/dev/sdc1 an ex)
> sudo dd if=$PWD/images/br-base-bin-nodisk-flat of=/dev/sdc1

Presenter
Presentation Notes
The final thing we need to do is partition our SD card. We want one partition to store the Linux binary that FireMarshal just built, and we want another partition as a filesystem that Linux running on the VCU118 can mount.

The link in the second sub-bullet will guide you through this partitioning.

Once your SD card is partitioned, you can plug it into your computer with a USB adapter. The dd command shown will copy the image to the first partition we created on our SD card. In our case, it is mounted at sdc1, but that may differ for your setup.

Now that we have our boot SD card prepared, let’s check back in on our bitstream build.

https://chipyard.readthedocs.io/en/1.5.0/Prototyping/VCU118.html#setting-up-the-sdcard

Programming the FPGA
and Running Linux

29

Presenter
Presentation Notes
Once the bitstream is built, we want to program it to the FPGA and boot from our SD card.

Last steps

30

chipyard/
generators/
rocket-chip/
boom/
sha3/

sims/
verilator/

fpga/
fpga-shells/
src/
generated-src/

software/
firemarshal/

tests/
build.sbt

• Use Vivado to program the FPGA with the bitstream
• Either can use GUI or CLI
• Bitstream - fpga/generated-src/<NAME>/obj/*.bit`

• Plug in the SDCard and connect to the serial port
• Might need to reset the DUT using CPU_RESET button

connect to serial port (in this case called ttyUSB1)
> screen –S FPGA_UART_CONSOLE /dev/ttyUSB1 115200

Presenter
Presentation Notes
You can use the Vivado hardware manager GUI or CLI to program the bitstream to the FPGA. That bitstream is located in the directory path shown.

Once the FPGA is programmed, you will plug the imaged SD card into the PMOD adapter, and the adapter into the PMOD port of the VCU118.

Additionally, we need to connect the serial adapter of the VCU118 to our PC using a USB to micro-USB cable plugged into the micro-USB port labeled “USB-UART commector” on the VCU118.

On our PC, this serial adapter mounts at /dev/ttyUSB1 – this may differ in your setup.

Now comes the exciting part – let’s create a screen session to our FPGA and get a terminal!

With the command shown, we launch a screen session titled FPGA_UART_CONSOLE. You should now be able to play around in Linux, running on the BOOM core we generated and mapped to the VCU118 using Chipyard!

Finding the CPU_RESET

31

Click this to reset the system without
having to re-program the board

Presenter
Presentation Notes
This is just a note that you may need to perform a CPU reset by pushing the circled button, before you can connect to the DUT with a screen session.

That’s it! Demo time!

32

Presenter
Presentation Notes
And that’s it! Let’s check out the results!

33

Demonstration Video

Presenter
Presentation Notes
[Narration of video]

Conclusion

34

• Future Updates
• More FPGAs supported
• Full behavior simulation of prototype at board level
• More peripherals
• Better SW support

• Used internally at Berkeley
• Real world interaction
• Bringup Platform
• Education
• Outreach!

Presenter
Presentation Notes
I’ll conclude with our future plans for the prototyping flow.

We plan to add more peripherals to the already supported FPGAs (for example, DDR backing memory on the Arty so that it too can boot Linux), as well as support for new FPGA development boards to suit different needs. We welcome listeners to read the FPGA prototyping documentation, adapt the flow to their own boards, and submit PRs to the Chipyard repo.

We have also made progress on behavioral simulation of the prototyping platform at the board-level . This will allow the Chipyard team and users to develop the prototyping flow for boards in a simulation environment, without needing hardware for the board itself.

Finally, we would like to improve software support for the .

As for what we plan to do with this flow – it has been used and will continue to be used here at Berkeley to prototype our Chipyard SoC designs on an FPGA, so that they can interact with real peripherals in real time.

The prototyping flow has also become part of our standard bringup procedure for our taped out chips, where an SoC mapped to fabric with this flow is used as a frontend server that communicates with our chips to run programs and debug.

And finally, support for accessible FPGAs are a great education and outreach tool for Chipyard. We think the ease of using Chipyard to generate a custom SoC bitstream for an affordable FPGA like the Arty will appeal to a lot of educators and hardware developers, or even embedded software developers who just to use the stock configurations for an up-to-date Rocket core to develop software for. We have already had students use this prototyping flow for projects in their digital design courses.

And of course, we welcome any involvement from listeners who would like to submit PRs for additional boards or peripherals, or issues with any bugs they find.

Coming up…
FireSim Introduction

35

Presenter
Presentation Notes
Thanks very much for joining this tutorial, and I’ll be happy to take questions offline. Coming up next is the introduction to FireSim by Sagar.

	Slide Number 1
	Motivation
	Goals
	How things will work
	How things will work
	Slide Number 6
	Prerequisites
	Example
	Directory Structure
	FPGA-Shells
	Chipyard supported boards
	Build a VCU118 bitstream
	Bitstreams
	Bitstreams
	In the meantime…
	Anatomy of an FPGA prototype
	View of the config
	View of the config
	View of the config
	View of the config
	View of the config
	View of the config
	View of the config
	Building Linux for FPGA prototypes
	Using FireMarshal to build Linux
	Using FireMarshal to build Linux
	Putting Linux onto VCU118 SDCard
	Putting Linux onto VCU118 SDCard
	Programming the FPGA �and Running Linux
	Last steps
	Finding the CPU_RESET
	That’s it! Demo time!
	Demonstration Video
	Conclusion
	Slide Number 35

