
Jerry Zhao

UC Berkeley

jzh@berkeley.edu

Chipyard Intro and Fundamentals

Outline

• Introduction to Chipyard

• Chipyard Tooling

• Chipyard SoC Structure and Organization

• Why Chipyard?

2

Trends in Open-source Hardware

3

• Organization/Specifications: RISC-V, CHIPS
Alliance, OpenHW

• Community: LowRISC, FOSSi

• Academia: PULP Platform, OpenPiton, ESP

• Government: DARPA POSH

• Industry: WD SWERVE, NVIDIA NVDLA

• Tools: Verilator, Yosys, OpenRoad

• Fabrication: Skywater 130nm

Building an Open Source RISC-V
System

4

Have you heard of this Free and

Open RISC-V thing? It should be

so easy to build real systems now
Cool! I want to build an

Open-Source custom

RISC-V SoC.

What do I need to do?

Let me list all the cool projects

you can use ….

Motivation

Large library of open-source projects for RISC-V SoC development

Goal:

Make it easy for small teams to
design, integrate, simulate, and tape-out a custom SoC

5

Chisel

FIRRTL

RISC-V

Rocket Core

BOOM Core

TileLink

Accelerators
Caches

Peripherals

FireMarshal

Configuration

System

FireSim

HAMMER

Chipyard

Chipyard

Tooling

Chisel

FIRRTL

RISC-V

Rocket Chip

Generators

Rocket Core BOOM Core

TileLinkAccelerators

Caches Peripherals

Diplomacy

Configuration

System

Flows

FireSim

HAMMER

Software RTL

Simulation

6

FireMarshal

How is this integrated? Generators!

7

How is this integrated? Generators!

8

• Everything starts from a
generator configuration

• Generators written in Chisel

• Generators can integrate third-
party Verilog instance IP

How is this integrated? Generators!

9

• Elaboration and
Transformation

• Internals: FIRRTL – IR
enables automated
manipulation of the
hardware description

• Externals: I/O and Harness
Binders – pluggable
interface functions enable
automated targeting of
different external interface
requirements

How is this integrated? Generators!

10

• Design flows
• Software RTL Simulation

• FPGA-Accelerated Emulation

• FPGA Prototyping

• VLSI Fabrication

Software

• Hardware alone is not enough

• Custom SoCs require custom
software

• Different platforms require
different firmware

• Chipyard codifies custom software
handling

• Toolchains

• Reproducible software generation
and management flows using
FireMarshal

Outline

• Introduction to Chipyard

• Chipyard Tooling

• Chipyard SoC Structure and Organization

• Why Chipyard?

12

13

14

15

Chisel

• Chisel – Hardware Construction Language built on Scala

• What Chisel IS NOT:
• NOT Scala-to-gates
• NOT HLS
• NOT tool-oriented language

• What Chisel IS:
• Productive language for generating hardware
• Leverage OOP/Functional programming paradigms
• Enables design of parameterized generators
• Designer-friendly: low barrier-to-entry, high reward
• Backwards-compatible: integrates with Verilog black-boxes

16

Chisel FIRRTL Verilog VLSI

Chisel VLSI

Chisel Example

// 3-point moving average implemented in the
style of a FIR filter

class MovingAverage3 extends Module {

val io = IO(new Bundle {

val in = Input(UInt(32.W))

val out = Output(UInt(32.W))

})

val z1 = RegNext(io.in)

val z2 = RegNext(z1)

io.out := io.in + z1 + z2

}

17

z1

32 32

z2

+

× × ×

32

+ +

1 1 1

in

out

Chisel Example

// Generalized FIR filter parameterized by coefficients

class FirFilter(bitWidth: Int, coeffs: Seq[Int]) extends Module {

val io = IO(new Bundle {

val in = Input(UInt(bitWidth.W))

val out = Output(UInt(bitWidth.W))

})

val zs = Wire(Vec(coeffs.length, UInt(bitWidth.W)))

zs(0) := io.in

for (i <- 1 until coeffs.length) {

zs(i) := RegNext(zs(i-1))

}

val products = zs zip coeffs map {

case (z, c) => z * c.U

}

io.out := products.reduce(_ + _)

}

18

z1

W W

z2

+

× × ×

W

+ +

c0 c1 c2

in

out

W

×

+

zN-1

cN-1

Chisel Example

// Basic implementation

val basic3Filter = Module(new MovingAverage3)

// Parameterized implementation

val better3Filter = Module(new FirFilter(32, Seq(1, 1, 1)))

// Generator is reusable

val delayFilter = Module(new FirFilter(8, Seq(0, 1)))

val triangleFilter = Module(new FirFilter(8, Seq(1, 2, 3, 2, 1)))

19

FIRRTL – LLVM for Hardware

20

FIRRTL emits tool-friendly, synthesizable Verilog

C/C++

Rust

LLVM IR

LLVM PassManager x86 assembly

Dead code

elimination

Statistics

collection
Optimization

ARM assembly

Chisel

Verilog

FIRRTL IR

FIRRTL Passes Verilog for

SW Sim
Dead

expression

elimination

Statistics

collection

Netlist

manipulation Verilog for

FPGA Sim

Outline

• Introduction to Chipyard

• Chipyard Tooling

• Chipyard SoC Structure and Organization

• Why Chipyard?

21

SoC Organization: Tiles

RocketTile

Rocket

Core
PTW

L1I$ L1D$

TileXBar

BoomTile

Boom

Core
PTW

L1I$ L1D$

TileXBar

A
c
c
e

le
ra

to
r

Contains:

• RISC-V core

• Private L1 caches

• TLBs, PTW

• RoCC
accelerator?

Many varieties:

• Rocket “efficiency” core?

• SonicBOOM out-of-order
“performance” core

• Sodor “educational” cores

• Your custom core?

Tiles: Units of replication in

a multi-core SoC

Rocket and BOOM

Rocket:

• First open-source RISC-V CPU

• In-order, single-issue RV64GC core

• Efficient design point for low-power devices

SonicBOOM:

• Superscalar out-of-order RISC-V CPU

• Advanced microarchitectural features to maximize IPC

• TAGE, out-of-order loads and stores, register renaming

• High-performance design point for general-purpose systems

23

Rocket and BOOM

Rocket and SonicBOOM:

• Boots off-the-shelf RISC-V Linux distros (buildroot, Fedora,
etc.)

• Supports floating point, virtual memory, supervisor mode, etc.

• Fully synthesizable, tapeout-proven

• Described in Chisel

• Fully open-sourced

24

RoCC Accelerators

• RoCC: Rocket Custom Coprocessor

• Sits adjacent to Rocket or BOOM

• Execute custom RISC-V instructions
for a custom extension

• Examples of RoCC accelerators in
Chipyard

• Hwacha vector accelerator

• Gemmini matrix accelerator

Tile

BOOM/Rocket

L1I$ L1D$

PTWTLBs
Decoupled

RoCC

Accelerator

L2

SystemBus

Core

Complex
Peripherals

inst

wb

25

SoC Organization: Digital System

RocketTile

Rocket

Core
PTW

L1I$ L1D$

TileXBar

L2

Bank

L2

Bank

Memory Bus

SystemXBar

Periphery Bus

UART GPIOs

Control Bus

BootROM

PLIC

CLINT

Debug

Front Bus

SerDes

BoomTile

Boom

Core
PTW

L1I$ L1D$

TileXBar

A
c
c
e

le
ra

to
r

RocketChip: Library of digital
components for an SoC
subsystem

TileLink: Open-source chip
interconnect protocol akin to
AXI4

Diplomacy: Framework for
describing connectivity of on-
chip interconnects

What is Rocket Chip?

• A library of RISC-V SoC
hardware components

• Protocol converters

• TileLink components

• Clock crossings

• Tapeout-proven in industry and
academia

• All open-sourced, built on Chisel

• Maintained by SiFive, Berkeley,
ChipsAlliance

27

TileLink Interconnect

28

• Free and open chip-scale interconnect standard

• Supports multiprocessors, coprocessors, accelerators, DMA, peripherals, etc.

• Provides a physically addressed, shared-memory system

• Supports cache-coherent shared memory, MOESI-equivalent protocol

• Verifiable deadlock freedom for conforming SoCs

Diplomacy

Problem: Interconnects are difficult to parameterize correctly

• Complex interconnect graph with many nodes

• Nodes are independently parameterized

Diplomacy: Framework for negotiating parameters between Chisel generators

• Graphical abstraction of interconnectivity

• Diplomatic lazy modules follow two-phase elaboration
• Phase one: nodes exchange configuration information with each other and decide final

parameters

• Phase two: Chisel RTL elaborates using calculated parameters

• Used extensively by RocketChip TileLink generators

29

Highly Parameterized Configurations

30

DigitalTop

RocketTile

Rocket

Core
PTW

L1I$ L1D$

TileXBar

L2

Bank

L2

Bank

Memory Bus

SystemXBar

Periphery Bus

UART GPIOs

Control Bus

BootROM

PLIC

CLINT

Debug

Front Bus

SerDes

BoomTile

Boom

Core
PTW

L1I$ L1D$

TileXBar

A
c
c
e

le
ra

to
r

JTAG

class CustomConfig extends Config(
new WithL1CacheWays(4) ++
new WithAsyncTiles ++
new WithRingSystemBus +
new WithFPGemmini ++
new With3WideBooms ++
new WithL2TLBs(512) ++
new WithL2Banks(4) ++

new WithDefaultGemmini ++
new WithNRocketCores(1) ++
new WithNBoomCores(1) ++
new WithBootROM ++
new WithUART ++
new WithJtagDTM ++
new WithGPIOs ++
new WithInclusiveCache(512) ++

Outline

• Introduction to Chipyard

• Chipyard Tooling

• Chipyard SoC Structure and Organization

• Why Chipyard?

31

Chipyard Goals

32

Beginner
Friendly

Multi-
purpose

Community-
friendly

Research-
friendly

Education-
friendly

Chipyard Learning Curve

33

Exploratory-level

• Configure a custom SoC from pre-existing

components

• Generate RTL, and simulate it in RTL level

simulation

• Evaluate existing RISC-V designs

Evaluation-level

• Integrate or develop custom hardware IP into

Chipyard

• Run FireSim FPGA-accelerated simulations

• Push a design through the Hammer VLSI flow

• Build your own system

Advanced-level

• Configure custom IO/clocking setups

• Develop custom FireSim extensions

• Integrate and tape-out a complete SoC

Multipurpose
ChipHarness

ChipTop

DigitalTop

IO
C

e
ll

IO
C

e
ll

IO
C

e
ll

IO
C

e
ll

A
n

a
lo

g

S
e

rd
e

s

P
L

L

FMC

Tethered FPGA

TestHarness

ChipTop

DigitalTop

D
R

A
M

S
im

.c
c

S
im

U
A

R
T
.c

c

S
im

G
P

IO
s
.c

c

S
im

J
T
A

G
.c

c

S
im

S
e

ria
l.c

c

T
e

s
tD

riv
e

r.v

FireSimHarness

ChipTop

DigitalTop

A
X

I4
B

rid
g
e

U
A

R
T

B
rid

g
e

G
P

IO
T

ie

J
T
A

G
T

ie

S
e

ria
lB

rid
g
e

C
lo

c
k
B

rid
g
e

FASED
Host

UART

Host

Serial

Clock

Driver

Multipurpose
ChipHarness

ChipTop

DigitalTop

IO
C

e
ll

IO
C

e
ll

IO
C

e
ll

IO
C

e
ll

A
n

a
lo

g

S
e

rd
e

s

P
L

L

FMC

Host FPGA

FireSimHarness

ChipTop

DigitalTop

A
X

I4
B

rid
g
e

U
A

R
T

B
rid

g
e

G
P

IO
T

ie

J
T
A

G
T

ie

TestHarness

ChipTop

DigitalTop

D
R

A
M

S
im

.c
c

S
im

U
A

R
T
.c

c

S
im

G
P

IO
s
.c

c

S
im

J
T
A

G
.c

c

S
im

S
e

ria
l.c

c

T
e

s
tD

riv
e

r.v

S
e

ria
lB

rid
g
e

C
lo

c
k
B

rid
g
e

FASED
Host

UART

Host

Serial

Clock

Driver

Digital System configuration

Chip IO configuration

Harness Configuration

A Complete Config

37

class CustomConfig extends Config(
new WithDefaultGemmini ++
new WithNRocketCores(1) ++
new WithNBoomCores(1) ++
new WithBootROM ++
new WithUART ++
new WithJtagDTM ++
new WithGPIOs ++
new WithInclusiveCache(512) ++

new WithPassThroughIOs ++

new WithDRAMSim ++
new WithSimUART ++
new WithSimJTAG ++
new WithSimSerial

)

TestHarness

ChipTop

DigitalTop

D
R

A
M

S
im

.c
c

S
im

U
A

R
T
.c

c

S
im

G
P

IO
s
.c

c

S
im

J
T
A

G
.c

c

S
im

S
e

ria
l.c

c

T
e

s
tD

riv
e

r.v

Digital

System

Chip IO

Harness

Chipyard is Education Friendly

38

Proven in many Berkeley Architecture

courses

• Hardware for Machine Learning

• Undergraduate Computer Architecture

• Graduate Computer Architecture

• Advanced Digital ICs

• Tapeout HW design course

Advantages of common shared HW

framework

• Reduced ramp-up time for students

• Students learn framework once, reuse it in

later courses

• Enables more advanced course projects

(tapeout a chip in 1 semester)

39

Chipyard is Research-Friendly

• Add new accelerators/custom instructions

• Modify OS/driver/software

• Perform design-space exploration across many parameters

• Test in software and FPGA-sim before tape-out

40

Chipyard is Community-Friendly

Documentation:

• https://chipyard.readthedocs.io/en/dev/

• 133 pages

• Most of today’s tutorial content is
covered there

Mailing List:

• google.com/forum/#!forum/chipyard

Open-sourced:

• All code is hosted on GitHub

• Issues, feature-requests, PRs are
welcomed

41

https://chipyard.readthedocs.io/en/dev/
https://groups.google.com/forum/#!forum/chipyard

Conclusion

Chipyard: An open, extensible research
and design platform for RISC-V SoCs

• Unified framework of parameterized
generators

• One-stop-shop for RISC-V SoC design
exploration

• Supports variety of flows for multiple
use cases

• Open-sourced, community and
research-friendly

Questions?

42

Beginner-
friendly

Multi-
purpose

Community-
friendly

Research-
friendly

Education-
friendly

