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Trends in Open-source Hardware
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• Organization/Specifications: RISC-V, CHIPS 
Alliance, OpenHW

• Community: LowRISC, FOSSi

• Academia: PULP Platform, OpenPiton, ESP

• Government: DARPA POSH

• Industry: WD SWERVE, NVIDIA NVDLA

• Tools: Verilator, Yosys, OpenRoad

• Fabrication: Skywater 130nm



Building an Open Source RISC-V 
System
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Have you heard of this Free and 

Open RISC-V thing? It should be 

so easy to build real systems now
Cool! I want to build an 

Open-Source custom 

RISC-V SoC.

What do I need to do?

Let me list all the cool projects 

you can use ….



Motivation

Large library of open-source projects for RISC-V SoC development

Goal:

Make it easy for small teams to 
design, integrate, simulate, and tape-out a custom SoC
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FireMarshal



How is this integrated? Generators!
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How is this integrated? Generators!
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• Everything starts from a 
generator  configuration

• Generators written in Chisel

• Generators can integrate third-
party Verilog instance IP



How is this integrated? Generators!
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• Elaboration and 
Transformation

• Internals: FIRRTL – IR 
enables automated 
manipulation of the 
hardware description

• Externals: I/O and Harness 
Binders – pluggable 
interface functions enable 
automated targeting of 
different external interface 
requirements



How is this integrated? Generators!
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• Design flows
• Software RTL Simulation

• FPGA-Accelerated Emulation

• FPGA Prototyping

• VLSI Fabrication



Software

• Hardware alone is not enough

• Custom SoCs require custom 
software

• Different platforms require 
different firmware

• Chipyard codifies custom software 
handling

• Toolchains

• Reproducible software generation 
and management flows using 
FireMarshal
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Chisel

• Chisel – Hardware Construction Language built on Scala

• What Chisel IS NOT:
• NOT Scala-to-gates
• NOT HLS
• NOT tool-oriented language

• What Chisel IS:
• Productive language for generating hardware
• Leverage OOP/Functional programming paradigms
• Enables design of parameterized generators
• Designer-friendly: low barrier-to-entry, high reward
• Backwards-compatible: integrates with Verilog black-boxes
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Chisel FIRRTL Verilog VLSI

Chisel VLSI



Chisel Example

// 3-point moving average implemented in the 
style of a FIR filter

class MovingAverage3 extends Module {

val io = IO(new Bundle {

val in = Input(UInt(32.W))

val out = Output(UInt(32.W))

})

val z1 = RegNext(io.in)

val z2 = RegNext(z1)

io.out := io.in + z1 + z2

}
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Chisel Example

// Generalized FIR filter parameterized by coefficients

class FirFilter(bitWidth: Int, coeffs: Seq[Int]) extends Module {

val io = IO(new Bundle {

val in = Input(UInt(bitWidth.W))

val out = Output(UInt(bitWidth.W))

})

val zs = Wire(Vec(coeffs.length, UInt(bitWidth.W)))

zs(0) := io.in

for (i <- 1 until coeffs.length) { 

zs(i) := RegNext(zs(i-1))

}

val products = zs zip coeffs map { 

case (z, c) => z * c.U

}

io.out := products.reduce(_ + _)

}
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Chisel Example

// Basic implementation

val basic3Filter = Module(new MovingAverage3)

// Parameterized implementation

val better3Filter = Module(new FirFilter(32, Seq(1, 1, 1)))

// Generator is reusable

val delayFilter = Module(new FirFilter(8, Seq(0, 1)))

val triangleFilter = Module(new FirFilter(8, Seq(1, 2, 3, 2, 1)))
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FIRRTL – LLVM for Hardware
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FIRRTL emits tool-friendly, synthesizable Verilog
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SoC Organization: Tiles
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Contains:

• RISC-V core

• Private L1 caches

• TLBs, PTW

• RoCC 
accelerator?

Many varieties:

• Rocket “efficiency” core?

• SonicBOOM out-of-order 
“performance” core

• Sodor “educational” cores

• Your custom core?

Tiles: Units of replication in 

a multi-core SoC



Rocket and BOOM

Rocket:

• First open-source RISC-V CPU

• In-order, single-issue RV64GC core

• Efficient design point for low-power devices

SonicBOOM:

• Superscalar out-of-order RISC-V CPU

• Advanced microarchitectural features to maximize IPC

• TAGE, out-of-order loads and stores, register renaming

• High-performance design point for general-purpose systems
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Rocket and BOOM

Rocket and SonicBOOM:

• Boots off-the-shelf RISC-V Linux distros (buildroot, Fedora, 
etc.)

• Supports floating point, virtual memory, supervisor mode, etc.

• Fully synthesizable, tapeout-proven

• Described in Chisel

• Fully open-sourced
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RoCC Accelerators

• RoCC: Rocket Custom Coprocessor

• Sits adjacent to Rocket or BOOM

• Execute custom RISC-V instructions 
for a custom extension

• Examples of RoCC accelerators in 
Chipyard

• Hwacha vector accelerator

• Gemmini matrix accelerator
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PTWTLBs
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SystemBus

Core 

Complex
Peripherals

inst

wb
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SoC Organization: Digital System
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RocketChip: Library of digital 
components for an SoC 
subsystem

TileLink: Open-source chip 
interconnect protocol akin to 
AXI4

Diplomacy: Framework for 
describing connectivity of on-
chip interconnects



What is Rocket Chip?

• A library of RISC-V SoC 
hardware components

• Protocol converters

• TileLink components

• Clock crossings

• Tapeout-proven in industry and 
academia

• All open-sourced, built on Chisel

• Maintained by SiFive, Berkeley, 
ChipsAlliance
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TileLink Interconnect
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• Free and open chip-scale interconnect standard

• Supports multiprocessors, coprocessors, accelerators, DMA, peripherals, etc.

• Provides a physically addressed, shared-memory system

• Supports cache-coherent shared memory, MOESI-equivalent protocol

• Verifiable deadlock freedom for conforming SoCs



Diplomacy

Problem: Interconnects are difficult to parameterize correctly

• Complex interconnect graph with many nodes

• Nodes are independently parameterized

Diplomacy: Framework for negotiating parameters between Chisel generators

• Graphical abstraction of interconnectivity

• Diplomatic lazy modules follow two-phase elaboration
• Phase one: nodes exchange configuration information with each other and decide final 

parameters

• Phase two: Chisel RTL elaborates using calculated parameters

• Used extensively by RocketChip TileLink generators
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Highly Parameterized Configurations
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JTAG

class CustomConfig extends Config(
new WithL1CacheWays(4) ++
new WithAsyncTiles ++
new WithRingSystemBus +
new WithFPGemmini ++
new With3WideBooms ++
new WithL2TLBs(512) ++
new WithL2Banks(4) ++

new WithDefaultGemmini ++
new WithNRocketCores(1) ++
new WithNBoomCores(1) ++
new WithBootROM ++
new WithUART ++
new WithJtagDTM ++
new WithGPIOs ++
new WithInclusiveCache(512) ++
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Chipyard Goals
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Beginner 
Friendly

Multi-
purpose

Community-
friendly

Research-
friendly

Education-
friendly



Chipyard Learning Curve
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Exploratory-level

• Configure a custom SoC from pre-existing 

components

• Generate RTL, and simulate it in RTL level 

simulation

• Evaluate existing RISC-V designs

Evaluation-level

• Integrate or develop custom hardware IP into 

Chipyard

• Run FireSim FPGA-accelerated simulations

• Push a design through the Hammer VLSI flow

• Build your own system

Advanced-level

• Configure custom IO/clocking setups

• Develop custom FireSim extensions

• Integrate and tape-out a complete SoC
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A Complete Config
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class CustomConfig extends Config(
new WithDefaultGemmini ++
new WithNRocketCores(1) ++
new WithNBoomCores(1) ++
new WithBootROM ++
new WithUART ++
new WithJtagDTM ++
new WithGPIOs ++
new WithInclusiveCache(512) ++

new WithPassThroughIOs ++

new WithDRAMSim ++
new WithSimUART ++
new WithSimJTAG ++
new WithSimSerial

)
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Chipyard is Education Friendly
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Proven in many Berkeley Architecture 

courses

• Hardware for Machine Learning

• Undergraduate Computer Architecture

• Graduate Computer Architecture

• Advanced Digital ICs

• Tapeout HW design course

Advantages of common shared HW 

framework

• Reduced ramp-up time for students

• Students learn framework once, reuse it in 

later courses

• Enables more advanced course projects 

(tapeout a chip in 1 semester)
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Chipyard is Research-Friendly

• Add new accelerators/custom instructions

• Modify OS/driver/software

• Perform design-space exploration across many parameters

• Test in software and FPGA-sim before tape-out
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Chipyard is Community-Friendly

Documentation:

• https://chipyard.readthedocs.io/en/dev/

• 133 pages

• Most of today’s tutorial content is 
covered there

Mailing List:

• google.com/forum/#!forum/chipyard

Open-sourced:

• All code is hosted on GitHub

• Issues, feature-requests, PRs are 
welcomed
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https://chipyard.readthedocs.io/en/dev/
https://groups.google.com/forum/#!forum/chipyard


Conclusion

Chipyard: An open, extensible research 
and design platform for RISC-V SoCs

• Unified framework of parameterized 
generators

• One-stop-shop for RISC-V SoC design 
exploration

• Supports variety of flows for multiple 
use cases

• Open-sourced, community and 
research-friendly

Questions?

42

Beginner-
friendly

Multi-
purpose

Community-
friendly

Research-
friendly

Education-
friendly


