Chipyard Intro and Fundamentals

Jerry Zhao
UC Berkeley
jzh@berkeley.edu

9 Berkeley

| Archltecture
Research

CHI rr'%YARD

ouine 4

* Introduction to Chipyard

» Chipyard Tooling

« Chipyard SoC Structure and Organization
* Why Chipyard?

@ Berkeley Architecture Research 5

Trends In Open-source Hardware

« Organization/Specifications: RISC-V, CHIPS
Alliance, OpenHW

« Community;: LowRISC, FOSSi : LHIPS

« Academia: PULP Platform, OpenPiton, ESP ‘ AI'I'IANEE
RISC =

 Government: DARPA POSH | ’ "=*.

» Industry: WD SWERVE, NVIDIA NVDLA e b=l
e [@ 0 S @ O FOSS|

* Tools: Verilator, Yosys, OpenRoad Qp Sesrmneres,. I

for developing and verifying hardware IP.

° Fabrlcatlon Skywater 130n m Western Digital’s RISC V "SweRV" Core Design

Released For Free

OpenHW GCroup Created and
Announces CORE-V Family of
Open source Cores for Use in

MICROPROCESSOR 7¢2277 .

v Insightful Analysis of Processor Technologies
ne Productlon SoCs
"‘ mEEEN ‘l
Am mmmEE EL GROWUP :xecutive Director of the RISC-V Foundation leads
...........
_ =| L "l ' Xavier N I A Now il as Open Source
EEI EA an P N P P March 26, 2018 I POF Version)
7 el i ROVEN PROCESSOR e VERILATOR

BErkeliey Arcnitecture ket er VU 3

Building an Open Source RISC-V '
System %&
N

-

Have you heard of this Free and
Open RISC-V thing? It should be
S0 easy to build real systems now

- &

4 N

Let me list all the cool projects
you can use

@ Berkeley Architecture Research & 4

Cool! | want to build an
Open-Source custom
RISC-V SoC.
What do | need to do?

Motivation

i

Large library of open-source projects for RISC-V SoC development

&

Chisel

BOOM Core

FIRRTL

RISC-V

Rocket Core

design, integrate, simulate, and tape-out a custom SoC

Accelerators

FireMarshal FireSim
TileLink Configuration
System
Caches
Peripherals HAMMER
Goal:

Make it easy for small teams to

Berkeley Architecture Research

Chipyard

Chipyard

Tooling

Chisel

FIRRTL

RISC-V

FireMarshal

Rocket Chip Flows
Generators -
Diplomacy FireSim

Rocket Core BOOM Core

Configuration HAMMER
System
Accelerators TileLink
Software RTL

Simulation

Caches Peripherals

@ Berkeley Architecture Research

How Is this integrated? Generators!

Custom SoC
Configuration
y
RTL Generators
RISC-V Accelerators Multi-level Peripherals Custom
Cores Caches P Verilog
v
RTL Build Process
IO and Harness Binding
¥ L] L 2 ¥
FIRRTL IR
y A 4
FireSim Transforms: VLSI Transforms:
FAME Decoupling Top and Harness Split
FPGA Platform Mapping Replace Memories
Assertion/Printf Synthesis Module Promotion
ILA Wiring Module Grouping
RAM Optimizations IO Cell Technology Mapping
v \ 4 v ¥
FireSim Behavioral FPGA-Mapped ;
Verilog Verilog Verilog VLSl Verilog
A A\ 4 A\ 4
FireSim FPGA- Software RTL Simulation FPGA Hammer Automated

@ Berkel ey Architecture .{\ffilue,.r?_tﬁd Emulation | | [_Commercial | [Open-Source | Prototyping VLSI Flow

How Is this integrated? Generators!

« Everything starts from a

Custom SoC

generator configuration
» Generators written in Chisel RSV | [acomerators | [Metevel” | Morperas | [Gestom

1 1 RTL Build Process
« Generators can integrate third- =
10 and Harness Binding
arty Verilog instance IP : : : .
FIRRTL IR
FireSim Transforms: VLSI Transforms:
FAME Decoupling Top and Harness Split
FPGA Platform Mapping Replace Memories
Assertion/Printf Synthesis Module Promotion
ILA Wiring Module Grouping
RAM Optimizations 10 Cell Technology Mapping
v v v L]
FireSim Behavioral FPGA-Mapped .
Verilog Verilog Verilog VLSI Verilog
|
¥ y
FireSim FPGA- Software RTL Simulation FPGA Hammer Automated
Accelerated Emulation | | |_Commercial | | Open-Source | Prototyping VLSI Flow

@ Berkeley Architecture Research

How Is this integrated? Generators!

 Elaboration and
Transformation

y

RTL Generators

* Internals: FIRRTL — IR Fadil | e | IriCey | pe—"| e
enables automated
manipulation of the S e B
hardware description : —— :

* EXte rn al S I/O an d H arn eSS FireSim T}ansfo.rms: VLSI Tralr'lsforms: .
Binders — pluggable FPGAPatom lapong Folcafamores.
interface functions enable LA Wing Modul Grouping

RAM Optimizations 10 Cell Technology Mapping
automated targeting of == _
FireSim Behavioral FPGA-Mapped VLS| Verilog

different external interface Veriog Verlog .

RTL Build Process

. * L 2 L 2 L 2
req u I rel I Ie ntS FireSim FPGA- Software RTL Simulation FPGA Hammer Automated
Accelerated Emulation Commercia ial] | Open-Source | Prototyping VLSI Flow

@ Berkeley Architecture Research 9

How Is this integrated? Generators!

 Design flows
« Software RTL Simulation
 FPGA-Accelerated Emulation
 FPGA Prototyping
« VLSI Fabrication

@ Berkeley Architecture Research

Custom SoC
Configuration
¥

RTL Generators

RISC-V
Cores

Multi-level
Caches

Accelerators Peripherals

Custom
Verilog

y

RTL Build Process

10 and Harness Binding

L 2 y

FIRRTL IR

!

ILA Wiring

FireSim Transforms:
FAME Decoupling
FPGA Platform Mapping
Assertion/Printf Synthesis

RAM Optimizations

y

) 4 L 2

!

VLSI Transforms:

Top and Harness Split
Replace Memories
Module Promotion
Module Grouping

10 Cell Technology Mapping

y

FireSim
Verilog

Behavioral

Verilog Verilog

FPGA-Mapped

VLSI Verilog

FireSim FPGA-
Accelerated Emulation

Software RTL Simulation FPGA

|__Commercial | | Open-Source | Prototyping VLSI Flow

Hammer Automated

10

Software

* Hardware alone is not enough Core Application Logic

* Custom SoCs require custom Libraries
software User-space distros

* Different platforms require 0S Kernel gjg’;i
different firmware

Drivers

* Chipyard codifies custom software

ha nd | | ng RISC-V Toolchain
. Standard Custom
* Toolchains
* Reproducible software generation [| | | |
and management flows using _
. QEMU Spike Software FireSim Test
FireMarshal Functional ISA RTL [i re>% :
. - . - . imulation Chip
Emulation || Simulation]| Simulation

@ Berkeley Architecture Research

ouine %

« Chipyard Tooling
« Chipyard SoC Structure and Organization
 Why Chipyard?

* Introduction to Chipyard %

CHSEL
2 RISC

@ Berkeley Architecture Research 12

RISC-\V"

= Simple
- Far smaller than other commercial I1SAs
Clean-slate design
- Clear separation between user and privileged ISA
- Avoids parchitecture or technology-dependent features
A modular |1SA designed for extensibility/specialization

- Small standard base ISA, with multiple standard extensions
- Sparse and variable-length instruction encoding for vast opcode space

Stable

- Base and standard extensions are frozen
- Additions via optional extensions, not new versions

= Community designed
- With leading industry/academic experts and software developers

(Z } Berkeley Architecture Research

13

RISC

% Market Research Telecast

€0 Electropages

, , Are we seeing the takeover from RISC-V?www.electropages
RISC-V: No longer just microcontrollers, but also

supercomputers _ _ _
- R — ith ARM, is making
With a stronger focus on €D Electropages NSRS M differ
e af . N Py : ' 2 -
have a future for superco Eyropean Processor Initiative Tapes Out Their First RISC-V o
7 hours ago
Recently, the EPI announced that it has develop E Busziness Korea
RISC-V technology and is now in the stages of ¢ , , ,
. o ’ Semiconductor Industry: Interest Strengthening in RISC-V
5 days ago
Representing a potential competitor to ARM, SiFive is a startup that is developing RISC-V
E The Mext Platform == arrhitertiire The aranicitinn nrice ninder nenantiatinn

Al Is RISC-V’s Trojan Horse into the Datacenter

If the workload-specific datacenter dominates in the near term, it could be

I 'EEE Spectrum

RISC-V Star Rises Among Chip Developers Worldwide

RISC-V'
1 week 3 & Tom's Hardware The upstart RISC-V chip architecture has found international traction with its
customizable open-source design and lack of licensing fees. By .
RISC-V Evolving to Address Supercomputers and Al Apr 7, 2021
RISC-V going after Al, ML, DL, HPC, edge, and supercomputers. S
5 days ago

E Data Center Knowledge

RISC-V Is On a Roll. Is It Ready to Take a Seat Alongside
Intel ...

RISC-V, the emerging open source instruction set architecture for processors ﬂ
that have so far been used mostly as accelerators, is suddenly on __.

g} Berkeley Architecture Research Mar 1, 2021 14

| L

R RISC /I

RISC-V Ecosystem

Open-source software: Commercial software:

Gcc, binutils, glibc, Linux, BSD, Lauterbach, Segger, IAR,

LLVM, QEMU, FreeRTOS, Micrium, ExpressLogic, Ashling,
ZephyrOS, LiteOS, SylixOs, ... AntMicro, Imperas, UltraSocC ...

RlSC

Software

LTl 5 sociicaion | Golden e | compiance
k4 Eoundation ISA specification | Golden Model | Compliance

Hardware

Open-source cores: Commercial core providers: Inhouse cores:
Rocket, BOOM, RI5CY, Andes, Bluespec, Cloudbear, Nvidia, +others
Ariane, PicoRV32, Piccolo, Codasip, Cortus, C-Sky,

SCR1, Shakti, Swery, InCore, Nuclei, SiFive,

@ Berk Hummingbird, ... Syntacore, ...

15

onse

* Chisel — Hardware Construction Language built on Scala

 What Chisel IS NOT:

* NOT Scala-to-gates ‘ - ‘ VLS|®
« NOT HLS
* NOT tool-oriented language

 What Chisel IS:
* Productive language for generating hardware
* Leverage OOP/Functional programming paradigms
« Enables design of parameterized generators
« Designer-friendly: low barrier-to-entry, high reward
 Backwards-compatible: integrates with Verilog black-boxes

‘ FIRRTL H Verilog H VLSI ‘

‘ Chisel

@ Berkeley Architecture Research 16

Chisel Example

// 3-point moving average implemented in the
style of a FIR filter

class MovingAverage3 extends Module {
val io = I0(new Bundle {
val in = Input(UInt(32.W))
val out = Output(UInt(32.W))

})

val z1 = RegNext(io.in)

val z2 = RegNext(zl) out
io.out := io.in + z1 + z2

¥

g’ Berkeley Architecture Research .

L’

Chisel Example

// Generalized FIR filter parameterized by coefficients
class FirFilter(bitWidth: Int, coeffs: Seq[Int]) extends Module {
val io = IO(new Bundle {
val in = Input(UInt(bitWidth.W))
val out = Output(UInt(bitWidth.W))

})
val zs = Wire(Vec(coeffs.length, UInt(bitWidth.W)))
zs(@) := io0.in

for (i <- 1 until coeffs.length) {
zs(1i) := RegNext(zs(i-1))
}

val products = zs zip coeffs map {

out

case (z, ¢) => z * c.U

}

io.out := products.reduce(_ + _)

g’ Berkeley Architecture Research 8

L’

Chisel Example ;E&

// Basic implementation

val basic3Filter = Module(new MovingAverage3)

// Parameterized implementation
val better3Filter = Module(new FirFilter(32, Seq(1l, 1, 1)))

// Generator 1s reusable
val delayFilter = Module(new FirFilter(8, Seq(@, 1)))
val triangleFilter = Module(new FirFilter(8, Seq(1, 2, 3, 2, 1)))

@ Berkeley Architecture Research 19

FIRRTL — LLVM for Hardware

C/C++ LLVM PassManager x86 assembly
LLVM IR Dead code Statistics .
elimination collection CipinnizELa
Rust ARM assembly
: Verilog for
FIRRTL Passes
Chisel SW Sim
FIRRTL IR exp?gzgion Statistics Netlist
_ T collection manipulation Verilog for
elimination :
Verilog FPGA Sim

FIRRTL emits tool-friendly, synthesizable Verilog
@ Berkeley Architecture Research

ouine 4

* Introduction to Chipyard

* Chipyard Tooling

* Chipyard SoC Structure and Organization
 Why Chipyard?

@ Berkeley Architecture Research 21

SoC Organization: Tiles $

Tiles: Units of replication in

a multi-core SoC

RocketTile BoomTile
e [P B EEED
—— : ——
L1I$ L1D$ % L1I$ L1D$
! v ! ! !
TileXBar TileXBar
i ¥
Contains:
e RISC-V core
* Private L1 caches
e TLBs, PTW
« RoCC

accelerator?

@ Berkeley Architecture Research

Many varieties:
» Rocket “efficiency” core?

 SonicBOOM out-of-order
“performance” core

« Sodor “educational” cores
 Your custom core?

Rocket and BOOM

PC EX MEM WB

i I ITLB I Ilm RFI Int.EX D 21 [I Commit}a , 10 ROCC
! ' D Accelerat

Gen |Access | |Deggtde |Acc§ss | ceelerator

D FP.RF D FP.EX1 D FP.EX2 D FP.EX3

Rocket:
* First open-source RISC-V CPU
In-order, single-issue RV64GC core
Efficient design point for low-power devices
SonicBOOM:
Superscalar out-of-order RISC-V CPU
« Advanced microarchitectural features to maximize IPC
* TAGE, out-of-order loads and stores, register renaming
High-performance design point for general-purpose systems

@ Berkeley Architecture Research

ICache TLB L1 Instruction Cache
ICache Tags 32-KiB 8-way
16 Bytes/cycle
LO BTB

(1-cycle redirect)

Dense L1 BTB
(2-cycle redirect)

Instruction Fetch & PreDecode (4 cycles)
(16 Byte window)

Inst Inst Inst Inst Inst Inst Imst Inst

TAGE-L Branch
Predictor
(3-cycle redirect)

Fetch Buffer
(32 entries)
Inst Inst Inst Inst

4-Wide Decode

Return-Address
Stack Decoder Decoder Decoder Decoder
FrontEnd
pop HOP pop HoP
Execute Rename / Allocate / Retirement
ReOrder Buffer (128 entries)
uHop uHop popP popP
Floating-point Q Q
oo neomerzie | Distributed Scheduler
(128 Registers)
— T MEM Issue
[T FrlEne INT Issue Queue
Register File Queue i Queue
i 32 entries i
[Predicate Bhysicar] | 32 entries 32 entries

Register File (16 bits)

Port |Por‘t| |Port| |Port| |Port| |Port| |Port| |P0rt|

op pop pop HOP pap nop Hop
AW [aw || Aaw || aw || reu || rru || AGU || AGU
Branch Branch Branch Branch FDiv EDEEM
Jump CSR RoCC Mul/Div EUs
Load Queue o] Forwarding.
(32 entries) /oycle . 8
(32 entries)
8B/cycle 2B/cycle DCache 8B/cycle Next-line
T1B Prefetcher
8 MSHRs
L1 Data Cache
Load/Store 32 KiB 8-Way Line Fill Buffers

Unit

(10 entries)

L2

128bit/cycle

ga1L ¢l

Aem-g g ¢TS
ayoed 71

128bit/cycle

ICache TLB _ L2

L1 Instruction Cache 128bit/cycle
Rocket and BOOM

16 Bytes/cycle

[0BTB -
(1-cycle redirect) Instruction Fetch & PreDecode (4 cycles)
16 Byte window
Dense L1 BTB (ye)
PC ID EX MEM WB (2-cycle redirect) Inst Inst Inst inst Inst Inst Inst Inst =
PC I ITLB | I Int.RF] DTLB Commitla. 10 ROCC TAGE-L Branch e B =
Gen | | Inst Int.EX | | OMMIt = A ccelerator Predictor E B, n " w
Access Decode ACCESS (3-cycle redirect)
4-Wide Decode
Return-Address
FP.RF FP.EX1 FPEX2 FP.EX3 Stack Decoder Decoder Decoder Decoder
FrontEnd
pop HOP pop HoP

Execute Rename / Allocate / Retirement

Rocket and SonicBOOM:
« Boots off-the-shelf RISC-V Linux distros (buildroot, Fedora, P & & &

Aem-g g ¢TS
ayoed 71

etc) e=rerer] Distributed Scheduler
' (128 Registers)
— e P | FP Issue INT Issue Queue MEM Issue
. . . . Register File Queue i Queue
« Supports floating point, virtual memory, supervisor mode, etc. | 1| oone|| 2 || s2entries
Re |sterF|Iet15 bits}
. Port |Por‘t| |Port||Port||Port||Port| |Port||P0rt|
 Fully synthesizable, tapeout-proven b o o e o dw
AW [aw || Aaw || aw || reu || rru || AGU || AGU
H T M N [Store |
 Described in Chisel | | e e [=
Jump CSR RoCC Mul/Div
EUs
« Fully open-sourced
Store Buffer &
Load Queue .
. 8B/cycle Forwarding
(32 entries) (32 entries)
8Bfcycle 8B/cycle DCache 8B/cycle Next-line
IR Prefetcher
L1 Data Cache 8 MSHRs
Load/Store 32 KiB S-Way Line Fill Buffers | 128pit/cycle
(10 entries)

Berkeley Architecture Research Unit

RoCC Accelerators 323

* RoCC: Rocket Custom Coprocessor Tile
] . inst
« Sits adjacent to Rocket or BOOM ‘ SoeRae ‘ o
« Execute custom RISC-V instructions Decoupled
for a custom extension ‘ TLBs ‘ PTW |‘—’ Nege
31 2524 2019 1514 13 12 11 7 6 0 ACESEENE
funct rs2 rsl | xd | xsl| xs2 | rd opcode ‘ L11$ ‘ ‘ L1D$ |<—>

7 5 5 1 1 1 5 7 —1 1 1

« Examples of RoCC accelerators in |

: SystemBus I
Chlpyard 3 3 3
« Hwacha vector accelerator Core
e - L2 Peripherals
« Gemmini matrix accelerator Complex

@ Berkeley Architecture Research o5

SoC Organization: Digital System 'i\;}

RocketTile BoomTile
Rosie | [, T RocketChlt P 2 lerar%/ 0(1; digital
e 3 o components for an So
s || Laos 5 [s |[wios subsystem
! ! ! ! !
TiIeIXBar TiIe)I(Bar . . .
: S TileLink: Open-source chip
! ! - ! f Interconnect protocol akin to
Blf;ik B:ik Iierlp ery Bui Control Bus “FrontTBus AXI4
t/l B i UART GPIOs " S00tROV SerDes
emory bus N PLIC
— Diplomacy: Framework for
> ebug

describing connectivity of on-
chip interconnects

@ Berkeley Architecture Research

What is Rocket Chip?

* Alibrary of RISC-V SoC
hardware components
* Protocol converters
 TileLink components
 Clock crossings

« Tapeout-proven in industry and
academia

* All open-sourced, built on Chisel

* Maintained by SiFive, Berkeley,
ChipsAlliance

@ Berkeley Architecture Research

T
EOS14

Chisel2 Chisel3+BAG2

BAG

aaaaa

8 cos1s

EOS16

Raven, H
BEAGLE,

urricane-

SWERVE

FFT2
EOS24

Fosa0 EOS22

urricane: ST 28nm FDSOI, SWERVE: TSMC 28nm EOS: IBM 45nm SOI, CRAFT: TSMC 16nm,
HYDRA: Intel 22nm; ARGO: GF12nm

EAGLEX

BEAGLE [&

27

TileLink Interconnect

Processor

Cache

Memory controller

Crossbar

Agent
| Master IF |
\ >

Slave IF H Slave IF

TN
[

| Slave IF |
| Master IF |
Slave IF
Agent

Processor

Memory-mapped
device

| Master IF |
</

Agent

Agent

* Free and open chip-scale interconnect standard
« Supports multiprocessors, coprocessors, accelerators, DMA, peripherals, etc.
* Provides a physically addressed, shared-memory system

« Supports cache-coherent shared memory, MOESI-equivalent protocol
* Verifiable deadlock freedom for conforming SoCs

@ Berkeley Architecture Research

28

Diplomacy %3

Problem: Interconnects are difficult to parameterize correctly
« Complex interconnect graph with many nodes
* Nodes are independently parameterized

Diplomacy: Framework for negotiating parameters between Chisel generators
« Graphical abstraction of interconnectivity

 Diplomatic lazy modules follow two-phase elaboration

 Phase one: nodes exchange configuration information with each other and decide final
parameters

 Phase two: Chisel RTL elaborates using calculated parameters
« Used extensively by RocketChip TileLink generators

@ Berkeley Architecture Research 29

Highly Parameterized Configurations

DigitalTop
RocketTile BoomTile
Rocket Boom
>
Core B ™ § ‘| Core
Q
L1I$ L1D$) L1I$
TileXBar TileXBar

v

Voo

o

SystemXBar
v v v 1 ¥

@ Berkeley Architecture Research

L2 L2 «M Control Bus || Front Bus
Bank Bank v v 4 *
v v > BootROM
UART GPIOs SerDes
Memory Bus N PLIC
N
> CLINT
> Debug —
A
JTAG
v v \ 4 v

A

CustomConfig extends Config(
WithLl1CacheWays(4) ++
WithAsyncTiles ++
WithRingSystemBus +
WithFPGemmini ++
With3WideBooms ++
WithL2TLBs(512) ++
WithL2Banks(4) ++

WithDefaultGemmini ++
WithNRocketCores(1l) ++
WithNBoomCores(1) ++
WithBootROM ++

WithUART ++

WithJtagDTM ++

WithGPIOs ++
WithInclusiveCache(512) ++

30

ouine 4

* Introduction to Chipyard

* Chipyard Tooling

« Chipyard SoC Structure and Organization
* Why Chipyard?

@ Berkeley Architecture Research 31

Chipyard Goals

Multi-
purpose

Community-
friendly

-

Beginner
Friendly

J

@ Berkeley Architecture Research

Research-
friendly

Education-
friendly

~

32

Chipyard Learning Curve

Advanced-level

» Configure custom IO/clocking setups

« Develop custom FireSim extensions

» Integrate and tape-out a complete SoC

Evaluation-level
* Integrate or develop custom hardware IP into

Chipyard
* Run FireSim FPGA-accelerated simulations
* Push a design through the Hammer VLSI flow

Build your own system

Exploratory-level

« Configure a custom SoC from pre-existing
components

« Generate RTL, and simulate it in RTL level

simulation

Evaluate existing RISC-V designs

Berkeley Architecture Research

33

Multipurpose

TestHarness

FireSimHarness

ChipHarness

ChipTop

DigitalTop

e e —

ChipTop

DigitalTop

L
I A 4
A 4 A 4 A 4 A 4 A
|]l 11 |
T T«
A
$-
\ 4 \4 v \4
&) 0|l nwl |lunl |4
3 =RIESRERRERRE:
cll@] |&]| |2 |5
= s||of [o] |Y
2] 2o > =. =4
3| |Z[|e] 2] 2] |2
o 311a] (8] 18] |<

abpugyIXVv

311 0IdO
AL OVIL <_+|

ChipTop

DigitalTop

P

A 4

B

b

|
] N
A 4 A 4
|
A 4

abpuglyvn

abpugjenas
[

abpLgx3o0|D

‘T
¢

<
A
$-
v
—| |=ll=]llzllo
ol |allal|all® 3|
ol [allallallaz |~
D D D D o O (I
= =||= = n Q
A A A A A
\ 4 A\ 4 \ 4 \ 4 \ 4
EMC

I T I

¢

FASED

o
(@)
~

Host Host
UART Serial Driver

Tethered FPGA

@ Berkeley Architecture Research

Multipurpose

FireSimHarness

ChipHarness

@ Berkeley Architecture Research

TestHarness
ChipTop ChipTop ChipTop
(DigitalTop DigitalTop DigitalTop
5wt | M s s e —
L v || || v | v ¥ |
= L - 1L - 1 A II = L - 1L - Il A II
el —| CACIE=TE 0 «
\ = == = | |V
4 sl |allalla]l22 |
O Oll0 O o Q||
() () D @ Do O -
= = = = n Q
A A A
>v 4 4 4 EMC <
))
AR RERE R I T I
= cll@f & || |5
AREIEIERERE - -
IREERERENHEIHarness Configuration oot FPOA
sl 181lg| [8]]8]]< oS
_

A Complete Config

TestHarness

class

ChipTo

DigitalTop

=Sy Stems
\ = |

new
new
new
new
new
new
new
new

new

A\

ol

AJBALIQISaL

IO'WISAVY

J

-

new
new
new
new

@ Berkeley Architecture Research

CustomConfig extends Config(
WithDefaultGemmini ++
WithNRocketCores(1l) ++
WithNBoomCores(1) ++
WithBootROM ++

WithUART ++

WithJtagDTM ++

WithGPIOs ++
WithInclusiveCache(512) ++

WithPassThroughIOs ++
WithDRAMSim ++
WithSimUART ++

WithSimJTAG ++
WithSimSerial

37

Chipyard Is Education Friendly 7323

Proven in many Berkeley Architecture

courses
. . Custom SoC
« Hardware for Machine Learning Configuration
« Undergraduate Computer Architecture < x
. RTL Generators
« Graduate Computer Architecture Riscv | [4 Multi-level _ Custom
L ccelerators Peripherals .
° Advanced Dlglta| ICs Cores Caches Verilog
. : 7 ¥ 1
Tapeout HW design course 1L Build Process
Intermediate
Advantages of common shared HW RISC-V Representation Process
f k Software P 3 Technology
ramewor) FireSim VLSI
« Reduced ramp-up time for students Transforms Transforms
« Students learn framework once, reuse it in | AN ‘ ¥
FPGA- Software Automated
later courses . Accelerated \ RTL VLSI
« Enables more advanced course projects Simulation Simulation Flow

(tapeout a chip in 1 semester) Computer Digital
Architecture Speci . Integrated Circuits
pecial Topics
Class Class

Classes

@ Berkeley Architecture Research 38

Berkeley Engineering students pull off novel chip design in a single semester. The class shows successful model for

expanding entry into field of semiconductor design

Berkeley engineering students pull off novel chip

design in a single semester

Class shows successful model for expanding entry into field of
@ Berkeley Archi semiconductor design

39

Chipyard i1s Research-Friendly 'i\;&

* Add new accelerators/custom instructions

* Modify OS/driver/software

« Perform design-space exploration across many parameters
 Test in software and FPGA-sim before tape-out

@ Berkeley Architecture Research 40

Chipyard iIs Community-Friendly 'i\;&

Docs » Welcome to Chipyard’s documentation! € Edit on GitHub

Documentation:
e https://chipyard.readthedocs.io/en/dev/
» 133 pages

* Most of today’s tutorial content is
covered there

Welcome to Chipyard’s documentation!

L JCHIP

Chipyard is a framework for designing and evaluating full-system hardware using

agile teams. It is composed of a collection of tools and libraries designed to provide
an integration between open-source and commercial tools for the development of

Mailing List:
* google.com/forum/#!forum/chipyard

systems-on-chip.

O Important

New to Chigyard? Jump to the Initial

Repository Setup page for setup instructions.
Open-sourced:
* All code is hosted on GitHub uch-bar / chipyard
* [ssues, feature-requests, PRs are g
welcomed

@ Berkeley Architecture Research

https://chipyard.readthedocs.io/en/dev/
https://groups.google.com/forum/#!forum/chipyard

Community-
friendly

Multi- Research-

Chipyard: An open, extensible research PHIPOSE riendly

and design platform for RISC-V SoCs

» Unified framework of parameterized | |
generators oy $ ey

* One-stop-shop for RISC-V SoC design
exploration S -

» Supports variety of flows for multiple
use cases

 Open-sourced, community and
research-friendly

Welcome to Chipyard’s documentation!

. JCHIP

Chipyard is a framework for designing and evaluating full-system hardware using
agile teams. It is composed of a collection of toaols and libraries designed to provide
an integration between open-source and commercial tools for the development of
systems-on-chip.

Questions?

O Important
New to Chigyard? Jump to the Initial

@ Berkeley Architecture Research

Repository Setup page for setup instructions.

