
Nathan Pemberton
UC Berkeley
nathanp@berkeley.edu

FireMarshal:
Software Workload Management



Tutorial Roadmap
Custom SoC 
Configuration

RTL Generators
RISC-V 
Cores

Multi-level 
Caches

Custom
VerilogPeripheralsAccelerators

Software RTL Simulation

VCS Verilator

FireSim FPGA-Accelerated Simulation

Simulation Debugging Networking

Automated VLSI Flow

Hammer Tech-
plugins

Tool-
plugins

RTL Build Process
FIRRTL 

TransformsFIRRTL IR Verilog

FireMarshal
Bare-metal &

Linux

Custom 
Workload

QEMU & Spike



FireMarshal Goals
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• Consistent Environments
• Problem: Everyone working off slightly 

different versions of platform/OS/etc.

• Re-Usable Workloads
• Problem: Tribal knowledge and non-

reproducible results
• No standard way to represent 

workloads
• No version control for integration

• Decoupled Development
• Easy integration from SW models (like 

spike or qemu) to real RTL (FireSim or 
actual chips)

Bootloader



FireMarshal Overview
FireSim Workload Management
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• Generate workload from machine-readable 
description

• A collection of boot binaries and disk images 
that run together

• Run generated workloads locally on SW simulators
• Install to FireSim to run FPGA-accelerated simulation
• Automatically test and post-process results
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Sha3 Example Workloads



FireMarshal Tutorial Outline

Workloads:
• Bare Metal Unit Tests

• sha3-bare-sw
• sha3-bare-rocc

• Linux-Based Unit Test
• sha3-linux
• sha3-linux-test

• Linux-Based Benchmark
• sha3-linux-jtr
• sha3-linux-jtr-crack
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Provided For You:
• Sha3 functional model (Spike)
• RoCC-Enabled Linux Kernel

Everything defined in its 
own repository:
sha3-workload.git
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$ cd ~/chipyard-afternoon/software/firemarshal
$ ls workloads/
$ ls workloads/sha3/

Example Workload:
Sha3 Workload Directory



Example Workload:
Sha3 Bare-Metal Unit Test
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{
"name" : "sha3-bare-rocc",
"workdir" : "sha3",
"base" : "bare",
"host-init" : "build.sh",
"bin" : ”benchmarks/bare/sha3-rocc.riscv",
"spike" : "spike-local/bin/spike",
"spike-args" : "--extension=sha3"
}

Specifies any parent workload to 
inherit settings from (‘bare’ is a 
minimal workload that runs hard-
coded RISCV binaries)

Script to run when building this 
workload (build.sh cross-compiles 
the unit test)

Hard-coded binary to use 
(produced by build.sh)

Golden-model sw simulator 
to use when launching this 
workload

sha3-bare-rocc.json
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DEMO
$ cd ~/chipyard-afternoon/software/firemarshal
$ ./marshal build workloads/sha3-bare-rocc.json
$ ./marshal launch -s workloads/sha3-bare-rocc.json
$ ./marshal test -s workloads/sha3-bare-rocc.json

Example Workload:
Sha3 Bare-Metal Unit Test



Example Workload:
SHA3 on Linux
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{
”name” : “sha3-linux”,
“base” : “br-base.json”,
“workdir” : “sha3”,
“host-init” : ”build.sh”,
“files” : [
[“bmarks/sha3-sw.rv”, “/root/sha3-sw”],
[”bmarks/sha3-rocc.rv”,”/root/sha3-rocc”],

],
“linux-src” : “riscv-linux”,
“spike” : “spike-local/bin/spike”,
“spike-args” : “--extension=sha3”
}

Basic Buildroot-based Linux 
distribution (provided by Marshal)

Run by Marshal at build time 
(cross-compiles the Linux 
benchmarks)

Files to copy into the guest root 
filesystem (the pre-compiled 
benchmarks in this case)

Optional custom Linux source to 
compile (needed in this case to 
enable rocc)

sha3-linux.json



Example Workload:
Linux-based Unit Test
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{
”name” : “sha3-linux-test”,
“base” : “sha3-linux.json”,
“workdir” : “sha3”,
“command” : ”/root/sha3-rocc”
“testing” : {
“refDir” : “goldenOutput/”

}
}

Inherit everything we did for the 
basic sha3 workload, no need to 
repeat ourselves.

Run by the guest every time it 
boots. Target will shutdown after 
running the command.

Known-good output. Marshal will 
compare the run output against 
this when you test the workload

sha3-linux-test.json



Example Workload:
Linux-based Unit Test
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DEMO
$ cd ~/chipyard-afternoon/software/firemarshal
$ ./marshal -dv test -s workloads/sha3-linux-test.json
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Linux Build Internals:
What’s in a binary?

BBL Berkeley Boot Loader:
Compiled into binary for now. Derived from the 
PK package

Linux Kernel
Upstream* Linux Kernel:
Compiled per-workload based on configuration

*Has some temporary patches for rocket chip

Initramfs
Contains platform drivers and a minimal busybox
environment. Linked directly into the kernel
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Linux Build Internals:
Diskless Designs

BBL

Linux Kernel

Initramfs
• Problem: Not every platform 

has a working disk device 
(e.g. spike)

• Solution: Compile the whole 
rootfs into the binary image!

• ‘./marshal –nodisk …’



• Problem: Not every 
platform has a working 
disk device (e.g. spike)

• Solution: Compile the 
whole rootfs into the binary 
image!

• ‘./marshal –nodisk …’
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Linux Build Internals:
Diskless Designs

BBL
Linux Kernel

Initramfs +
rootfs



Example Workload:
Linux-based Benchmark – John the Ripper
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{
“name” : “sha3-linux-jtr”,
“base” : “sha3-linux.json”,
“workdir” : “sha3”,
“host-init” : ”jtr/build.sh”,
“overlay” : “jtr/overlay”,

}

Inherit from sha3-linux again. 
Only need to specify that stuff 
once.

Run on host exactly once (cross-
compiles benchmark).

John The Ripper must be installed 
to work correctly. The overlay 
allows us to specify a complex 
directory structure.

sha3-linux-jtr.json



Example Workload:
Linux-based Benchmark – John the Ripper

18

$ cd ~/chipyard-afternoon/software/firemarshal
$ ./marshal -d build workloads/sha3-linux-jtr.json
$ ./marshal -d launch -s workloads/sha3-linux-jtr.json

In the target:
user: root
password: firesim
$ cd sha3
$ john --format=Raw-SHA3-256-rocc short.txt
$ poweroff -f



FireMarshal-Provided

Your Workload

• Marshal avoids repeating work 
by inheriting from parents

• Inheritance Process 
(recursively)

• Build parent completely
• Copy parent rootfs
• Apply child rules (e.g. overlays, 

guest-init, etc)
• GNU Make style dependency 

checking
• FireMarshal only rebuilds if 

parents are out of date
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Linux Build Internals:
Inheriting Workloads

buildroot

br-base.json

sha3-linux.json

sha3-linux-jtr.json

sha3-linux-jtr-test.json
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More Complex Use-Cases



Multi-Node Workloads
(“jobs”)
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{
”name” : “job-example”,
“base” : “br-base.json”,
“jobs” : [
{ “name” : “node0”,
“command” : “ping –c 1 172.16.0.3”,

},
{ “name” : “node1”,
“command” : “ping –c 1 172.16.0.2”,

}
]

}

• Each job runs on a single 
node in multi-node 
simulations.

• Described the same as any 
workload

• implicitly ‘base’d on the 
enclosing workload

• Can run one at a time in 
SW simulation.

• Must use FireSim to use the 
network

job-example.json



Native Initialization
(“guest-init”)
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{
”name” : “guest-init-example”,
“base” : “fedora-base.json”,
“guest-init” : “init.sh”

}

• “guest-init” script is run once 
on the guest during build

• Run in Qemu
• Can access internet

• Useful for installing packages 
and/or natively compiling 
benchmarks

#!/bin/bash
yum install –y blas python3 …

cd cafe2_src/
make

guest-init-example.json

init.sh



Automatic Results Processing
(“post-run-hook”)
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{
”name” : “results-example”,
“base” : “mytest.json”,
“outputs” : [“/root/res.csv”],
“post-run-hook” : “results.py”

}

#!/usr/bin/env python
from pathlib import Path
import csv

resultPath = Path(sys.argv[1]) /
‘results-example’ / ‘res.csv’

processResult(resultPath)

results-example.json

results.py

“post-run-hook” executed on the 
host after every run

• Good for post-processing of more 
complex experiments

“outputs” specifies files to copy 
from guest image after a run

Path to the results directory passed 
to the script

Do anything you want with the 
results. For example, copy to a 
known location, or sanity check
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Running Workloads on FireSim



FireMarshal Overview
FireSim Install

25

Local Development
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• Generates FireSim-native workload 
configuration from FireMarshal

• After running install, you can use FireSim
to launch the workload on the real RTL

• Note: unlike functional simulation, FireSim
makes a copy of the rootfs before running.



Installing Workloads to FireSim
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$ cd ~/chipyard-afternoon/software/firemarshal
$ ./marshal install workloads/sha3*.json
$ cd ~/chipyard-afternoon/sims/firesim/deploy/
$ cat workloads/sha3-linux.json


