
Nathan Pemberton
UC Berkeley
nathanp@berkeley.edu

FireMarshal:
Software Workload Management



Tutorial Roadmap
Custom SoC 
Configuration

RTL Generators
RISC-V 
Cores

Multi-level 
Caches

Custom
VerilogPeripheralsAccelerators

Software RTL Simulation

VCS Verilator

FireSim FPGA-Accelerated Simulation

Simulation Debugging Networking

Automated VLSI Flow

Hammer Tech-
plugins

Tool-
plugins

RTL Build Process
FIRRTL 

TransformsFIRRTL IR Verilog

FireMarshal
Bare-metal &

Linux

Custom 
Workload

QEMU & Spike



FireMarshal Goals

3
3

Hardware

API

Software

Physical Design

Platform
μ-Architecture

I/O’s &
API’s

Drivers

OS Kernel

User-space distros (e.g. fedora)

Core Application Logic

Kernel 
Bypass

• Consistent Environments
• Problem: Everyone working off slightly 

different versions of platform/OS/etc.

• Re-Usable Workloads
• Problem: Tribal knowledge and non-

reproducible results
• No standard way to represent 

workloads
• No version control for integration

• Decoupled Development
• Easy integration from SW models (like 

spike or qemu) to real RTL (FireSim or 
actual chips)

Bootloader



FireMarshal Overview
FireSim Workload Management

4

Local Development

EC2 F1

fedora.json

rdma.json

QEMU

Server
bin

rootfs

build

launch

launch

install

test

Reference

Outputs

FireSim

Spike

Client
bin

rootfs

• Generate workload from machine-readable 
description

• A collection of boot binaries and disk images 
that run together

• Run generated workloads locally on SW simulators
• Install to FireSim to run FPGA-accelerated simulation
• Automatically test and post-process results



5

Sha3 Example Workloads



FireMarshal Tutorial Outline

Workloads:
• Bare Metal Unit Tests

• sha3-bare-sw
• sha3-bare-rocc

• Linux-Based Unit Test
• sha3-linux
• sha3-linux-test

• Linux-Based Benchmark
• sha3-linux-jtr
• sha3-linux-jtr-crack

6

Provided For You:
• Sha3 functional model (Spike)
• RoCC-Enabled Linux Kernel

Everything defined in its 
own repository:
sha3-workload.git



7

$ cd ~/chipyard-afternoon/software/firemarshal
$ ls workloads/
$ ls workloads/sha3/

Example Workload:
Sha3 Workload Directory



Example Workload:
Sha3 Bare-Metal Unit Test

8

{
"name" : "sha3-bare-rocc",
"workdir" : "sha3",
"base" : "bare",
"host-init" : "build.sh",
"bin" : ”benchmarks/bare/sha3-rocc.riscv",
"spike" : "spike-local/bin/spike",
"spike-args" : "--extension=sha3"
}

Specifies any parent workload to 
inherit settings from (‘bare’ is a 
minimal workload that runs hard-
coded RISCV binaries)

Script to run when building this 
workload (build.sh cross-compiles 
the unit test)

Hard-coded binary to use 
(produced by build.sh)

Golden-model sw simulator 
to use when launching this 
workload

sha3-bare-rocc.json



9

DEMO
$ cd ~/chipyard-afternoon/software/firemarshal
$ ./marshal build workloads/sha3-bare-rocc.json
$ ./marshal launch -s workloads/sha3-bare-rocc.json
$ ./marshal test -s workloads/sha3-bare-rocc.json

Example Workload:
Sha3 Bare-Metal Unit Test



Example Workload:
SHA3 on Linux

10

{
”name” : “sha3-linux”,
“base” : “br-base.json”,
“workdir” : “sha3”,
“host-init” : ”build.sh”,
“files” : [
[“bmarks/sha3-sw.rv”, “/root/sha3-sw”],
[”bmarks/sha3-rocc.rv”,”/root/sha3-rocc”],

],
“linux-src” : “riscv-linux”,
“spike” : “spike-local/bin/spike”,
“spike-args” : “--extension=sha3”
}

Basic Buildroot-based Linux 
distribution (provided by Marshal)

Run by Marshal at build time 
(cross-compiles the Linux 
benchmarks)

Files to copy into the guest root 
filesystem (the pre-compiled 
benchmarks in this case)

Optional custom Linux source to 
compile (needed in this case to 
enable rocc)

sha3-linux.json



Example Workload:
Linux-based Unit Test

12

{
”name” : “sha3-linux-test”,
“base” : “sha3-linux.json”,
“workdir” : “sha3”,
“command” : ”/root/sha3-rocc”
“testing” : {
“refDir” : “goldenOutput/”

}
}

Inherit everything we did for the 
basic sha3 workload, no need to 
repeat ourselves.

Run by the guest every time it 
boots. Target will shutdown after 
running the command.

Known-good output. Marshal will 
compare the run output against 
this when you test the workload

sha3-linux-test.json



Example Workload:
Linux-based Unit Test

13

DEMO
$ cd ~/chipyard-afternoon/software/firemarshal
$ ./marshal -dv test -s workloads/sha3-linux-test.json



14

Linux Build Internals:
What’s in a binary?

BBL Berkeley Boot Loader:
Compiled into binary for now. Derived from the 
PK package

Linux Kernel
Upstream* Linux Kernel:
Compiled per-workload based on configuration

*Has some temporary patches for rocket chip

Initramfs
Contains platform drivers and a minimal busybox
environment. Linked directly into the kernel



15

Linux Build Internals:
Diskless Designs

BBL

Linux Kernel

Initramfs
• Problem: Not every platform 

has a working disk device 
(e.g. spike)

• Solution: Compile the whole 
rootfs into the binary image!

• ‘./marshal –nodisk …’



• Problem: Not every 
platform has a working 
disk device (e.g. spike)

• Solution: Compile the 
whole rootfs into the binary 
image!

• ‘./marshal –nodisk …’

16

Linux Build Internals:
Diskless Designs

BBL
Linux Kernel

Initramfs +
rootfs



Example Workload:
Linux-based Benchmark – John the Ripper

17

{
“name” : “sha3-linux-jtr”,
“base” : “sha3-linux.json”,
“workdir” : “sha3”,
“host-init” : ”jtr/build.sh”,
“overlay” : “jtr/overlay”,

}

Inherit from sha3-linux again. 
Only need to specify that stuff 
once.

Run on host exactly once (cross-
compiles benchmark).

John The Ripper must be installed 
to work correctly. The overlay 
allows us to specify a complex 
directory structure.

sha3-linux-jtr.json



Example Workload:
Linux-based Benchmark – John the Ripper

18

$ cd ~/chipyard-afternoon/software/firemarshal
$ ./marshal -d build workloads/sha3-linux-jtr.json
$ ./marshal -d launch -s workloads/sha3-linux-jtr.json

In the target:
user: root
password: firesim
$ cd sha3
$ john --format=Raw-SHA3-256-rocc short.txt
$ poweroff -f



FireMarshal-Provided

Your Workload

• Marshal avoids repeating work 
by inheriting from parents

• Inheritance Process 
(recursively)

• Build parent completely
• Copy parent rootfs
• Apply child rules (e.g. overlays, 

guest-init, etc)
• GNU Make style dependency 

checking
• FireMarshal only rebuilds if 

parents are out of date
19

Linux Build Internals:
Inheriting Workloads

buildroot

br-base.json

sha3-linux.json

sha3-linux-jtr.json

sha3-linux-jtr-test.json



20

More Complex Use-Cases



Multi-Node Workloads
(“jobs”)

21

{
”name” : “job-example”,
“base” : “br-base.json”,
“jobs” : [
{ “name” : “node0”,
“command” : “ping –c 1 172.16.0.3”,

},
{ “name” : “node1”,
“command” : “ping –c 1 172.16.0.2”,

}
]

}

• Each job runs on a single 
node in multi-node 
simulations.

• Described the same as any 
workload

• implicitly ‘base’d on the 
enclosing workload

• Can run one at a time in 
SW simulation.

• Must use FireSim to use the 
network

job-example.json



Native Initialization
(“guest-init”)

22

{
”name” : “guest-init-example”,
“base” : “fedora-base.json”,
“guest-init” : “init.sh”

}

• “guest-init” script is run once 
on the guest during build

• Run in Qemu
• Can access internet

• Useful for installing packages 
and/or natively compiling 
benchmarks

#!/bin/bash
yum install –y blas python3 …

cd cafe2_src/
make

guest-init-example.json

init.sh



Automatic Results Processing
(“post-run-hook”)

23

{
”name” : “results-example”,
“base” : “mytest.json”,
“outputs” : [“/root/res.csv”],
“post-run-hook” : “results.py”

}

#!/usr/bin/env python
from pathlib import Path
import csv

resultPath = Path(sys.argv[1]) /
‘results-example’ / ‘res.csv’

processResult(resultPath)

results-example.json

results.py

“post-run-hook” executed on the 
host after every run

• Good for post-processing of more 
complex experiments

“outputs” specifies files to copy 
from guest image after a run

Path to the results directory passed 
to the script

Do anything you want with the 
results. For example, copy to a 
known location, or sanity check



24

Running Workloads on FireSim



FireMarshal Overview
FireSim Install

25

Local Development

EC2 F1

fedora.json

rdma.json

QEMU

Serve
rbin

rootfs

build

launch

launch

install

test
Reference

Outputs

FireSim

Spike

Client
bin

rootfs

• Generates FireSim-native workload 
configuration from FireMarshal

• After running install, you can use FireSim
to launch the workload on the real RTL

• Note: unlike functional simulation, FireSim
makes a copy of the rootfs before running.



Installing Workloads to FireSim

26

$ cd ~/chipyard-afternoon/software/firemarshal
$ ./marshal install workloads/sha3*.json
$ cd ~/chipyard-afternoon/sims/firesim/deploy/
$ cat workloads/sha3-linux.json


