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The Non Recurring Engineering (NRE) Cost Barrier

Cost of Developing New Products

320

-  NRE is a huge barrier to building chips

Validation ‘

-

S eee  * Many sources; death by a thousand cuts

—> Requires a large community effort
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Want HW simulators that:

Are as fast as silicon

Are as detailed as silicon

Have all the benefits of SW-based simulators
Are low-cost

Our Thesis:

* FPGAs are the only viable basis technology
= Build FPGA-accelerated simulators with
SW-like flexibility using an open-source tool

Berkeley Architecture Research



Useful Trends Throughout the Stack

Open ISA Open, Silicon-Proven
: SoC Implementations
‘ fedora
RISC

High-Productivity —
Hardware IR

%%ERTL
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FireSim at 35,000 feet

* Open-source, fast, automatic, deterministic FPGA-accelerated hardware
simulation for pre-silicon verification and performance validation

* Ingests:

* Your RTL design (FIRRTL, either via Chisel or Verilog via Yosys*)
e Orincluded designs—Rocket Chip, BOOM, NVDLA, PicoRV32, and growing
 HW and/or SW IO models (e.g. UART, Ethernet, DRAM, etc.)

* Workload descriptions

 Produces:

* Fast, cycle-exact, scalable simulation of your design + models around it
e Automatically deployed to cloud FPGAs (AWS EC2 F1)

[1] S. Karandikar et. al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud.” ISCA 2018
[4] S. Karandikar et. al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud.” IEEE Micro Top Picks 2018

Berkeley Architecture Research 5



Three Distinguishing Features of FireSim

1) Not FPGA prototypes, rather FPGA-accelerated simulators
* Akin to commercial co-simulation platforms

2) Uses cloud FPGAs
* Inexpensive, elastic supply of large FPGAs

* Easy to collaborate between software/hardware
developers and between researchers

* Heavy automation to hide FPGA complexity
And of course...
3) Open-source (https://fires.im)

Berkeley Architecture Research 6



https://fires.im/

Why is FPGA Prototyping insufficient?

Taped-out SoC Design

RTL DRAM

taped-out 100
1 GHZ latency

SoC sees 100 cycle DRAM latency

Berkeley Architecture Research
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RTL DRAM

on FPGA 100ne
100 MHz ElEEE

SoC sees 10 cycle DRAM latency



The Difficulty with FPGA Prototypes

* Every FPGA clock executes one cycle of the simulated
machine

* Exposes latencies of FPGA resources to the simulated world.
Three implications:

1) FPGA resources may not be an accurate model (ex.
previous slide)

2) Simulations are non-deterministic
3) Different host FPGAs produce different simulation results

Berkeley Architecture Research 8



Separating Target and Host

Target: the machine under Host: the machine executing
simulation (hosting) the simulation

Physical

FPGA PRAN
Fabric

RTL DRAM

taped-out 100
1 GHZ latency

100ns
latency

Closed simulation world.
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Separating Target and Host

Target: the machine under Host: the machine executing
simulation (hosting) the simulation

RTL DRAM

taped-out 100
1 GHZ latency

Mem
Channel
CPU

Core

CPU
Core

100ns
latency

DRAM

Multiprocessor

Closed simulation world.

Berkeley Architecture Research

10



FireSim Generates FPGA-Hosted Simulators
Core Core DRAM

VERILATOR CPU CPU
Core Core 100ns
latency
RTL DRAM Multiprocessor

taped-out § 100

latency
1 G H Z Physical
d /C DRAM
/‘ FPGA -
/ @& Fabric 100ns
/h latency
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Host Decoupling in FireSim: Transforming the Target

1) Convert RTL into a latency-insensitive [19] model using FIRRTL transform
— =

FASED([3]

. DRAM
RTL Design Timing
Model
(4 GB)

(4 GB)

DDR3
RTL Design DRAM

~ -
2) Generate FPGA-hosted model for DRAM [3] (think DRAMSim on an FPGA)
3) Generate queues (token channels) to connect the target models

[19] Carloni et. al., “Theory of Latency Insensitive Design”, also see: RAMP
[3] Biancolin et. al., “FASED: FPGA-accelerated Simulation and Evaluation of DRAM”, FPGA’19

;D Berkeley Architecture Research
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Host Decoupling in FireSim: Mapping to the FPGA

FASED
DRAM
Timing

Model Mem
RTL Design _

100 100ns
latency

<- Resp Queue Physical

DRAM

cycle

Req Queue -> latency

FPGA Fabric

SoC sees realistic DRAM latency

&)
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Benefits of Host Decoupling on FPGAS

Simulations:
* Execute deterministically
* Produce identical results on different hosts (FPGAs & CPUs)

This enables support for:

1. SW co-simulation (e.g. block device, network models)

2. Simulating large targets over distributed hosts (FireSim, ISCA “18)
3. Non-invasive debugging and instrumentation (DESSERT, FPL ‘18)

Berkeley Architecture Research 14



What Can You Do With
FireSim?



Simulating a datacenter-scale system

e Scale-out simulation
* Model hardware at scale, cycle-accurately
* Run real software

e RTL and abstract SW model co-simulation

e Server Simulations
* Good fit for the FPGA
* We have tapeout-proven RTL: FAME-1
transform w/Golden Gate

 Network simulation

* Little parallelism in switch models (e.g. a
thread per port)

* Need to coordinate all the distributed server
simulations

e So use CPUs + host network

Berkeley Architecture Research

fl.l6xlarge

Host Ethernet (EC2 Network)
4

Switch Model
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How-to-build a datacenter-scale
FireSim simulation

[1] S. Karandikar et. al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud.” ISCA 2018
[4] S. Karandikar et. al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud.” IEEE Micro Top Picks 2018

Berkeley Architecture Research 17



Step 1: Server SoC in RTL
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Step 1: Server SoC in RTL
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Step 2: FPGA Simulation of one server blade

Modeled System
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Step 2: FPGA Simulation of one server blade

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz
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Step 2: FPGA Simulation of one server blade
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Step 3: FPGA Simulation of 4 server blades

Modeled System

Cost- Server - 4 Server Blades
$0.49 ver hour Blade - 16 Cores
' Simulation i

(SpOt) 64 GB DDR3
Resource Util.
-< 1 FPGA

1.65 per hour
(Sgn-deenand) Server Server - 4/4 Mem Chans
. Bla;dte_ X Bla;dte_ Sim Rate
imulation imulation _~14.3 MH3z

(netw)



Step 3: FPGA Simulation of 4 server blades

Modeled System
- 4 Server Blades

[PPON INVYHA

- 16 Cores

Simulation F P G . -64 GB DDR3

Resource Util.

FPGA

igey
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Step 4: Simulating a 32 node rack

Modeled System

- 32 Server Blades
- 128 Cores
Cost: - 512 GB DDR3
$2.60 per - 32 Port ToR
hour (spot) Switch

s, 01 24
S1320 per EEEE EEEN ||nkS

hour (on- Resource Util.
demand) - 8 FPGAs =
- 1x f1.16xlarge
Sim Rate
-~10.7 MHz

(netw)



Step 4: Simulating a 32 node rack
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Step 4: Simulating a 32 node rack

rpGA | Frca |IEE-= 1 FPGA
(4 Sims) § (4 Sims) (4 Sims)

Host Instance CPU: ToR SW|tch Model

FPGA FPGA FPGA FPGA
(4 Sims) § (4 Sims) f§ (4 Sims) § (4 Sims)

Modeled System
- 32 Server Blades
- 128 Cores

-512 GB DDR3

- 32 Port ToR
Switch

- 200 Gb/s, 2us

links

Resource Util.

- 8 FPGAs =

- 1x f1.16xlarge
Sim Rate

-~10.7 MHz
(netw)




Step 5: Simulating a 256 node “aggregation pod”

Modeled System

- 256 Server
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Step 5: Simulating a 256 node “aggregation pod”

Modeled System

- 256 Server
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Step 6: Simulating a 1024 node datacenter

Aggregation Pod

FPGA | FPGA =i | FPGA
ims) 4 sims) f =z [ =z
Rack Rack Rack
FPGA FPGA
i (4 sims) (4 sims) i

Root Switch

Aggregation Pod | Aggregation Pod

Modeled System
- 1024 Servers

- 4096 Cores
-16 TB DDR3

- 32 ToRs, 4 Aggr, 1
Root

- 200 Gb/s, 2us
links

Resource Util.

- 256 FPGAs =

- 32x f1.16xlarge
- 5x m4.16xlarge
Sim Rate

-~6.6 MHz (netw)




Step 6: Simulating a 1024 node datacenter

Modeled System
- 1024 Servers

Harnesses millions of dollars of FPGAs 6 Cores
. B DDR3
to simulate 1024 nodes cycle-exactly ors, 4 A
with a cycle-accurate network simulation
and global synchronization

at a cost-to-user of only 100s of dollars/hour s ‘AJ“'-
w S =

- 32x f1.16xlarge
- 5x m4.16xlarge
Sim Rate

-~6.6 MHz (netw)

Gb/s, 2us

Aggregation Pod | Aggregation Pod




Experimenting on a 1024 Node Datacenter

512 S — e Aggregation Pod

Memcached Mutilate e p——
Servers Clients Rack Rack Rack =¥ -
(All 1024 nodes boot Linux first)

50th Root Switch
%-ile (us)

Cross-ToR 79.3

Aggregation Pod | Aggregation Pod

Berkeley Architecture Research



Reproducing tail latency effects from deployed

clusters

* Leverich and Kozyrakis show effects of thread-imbalance in memcached in
EuroSys '14 [3]

No thread imbalance Thread imbalance
From [3], under thread
nemeached 1 2 3 4 > imbalance, we expect:
threads
1) Median latency to be
Rocket | Z l Rocket | = |l Rocket | > W Rocket z unchanged
Core |& Core |2 Core |& Core |2 ?

1 11 1
L1I L1D L1l L1D L1I L1

2) Tail latency to increase

1D
TileLink2 On-Chip Interw drastically
33
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Reproducing tail latency effects from deployed

clusters

* Let’s run a similar experiment on

an 8 node cluster in FireSim: a 4 threads, 50th percentile
8000 -
5 threads, 50th percentile
m
2
> 6000
O
c
3
©
-
+ 4000
)
>
(o)
i
2000 -
0 A Qgﬁaammammnammanmmm&ammmaaam&nmewaumamﬁnsrp'

0 20000 40000 60000 80000 100000 120000 140000
Queries Per Second
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Reproducing tail latency effects from deployed
clusters

* Let’s run a similar experiment on
an 8 nOde ClUSter in FireSim: m 4 threads, 50th percentile

Alon will show you how to run
networked experiments

at4:15pm
,—;_m»;sms-*:!

A3 (Y SBRIXDE PPN X5 SOXXDe be DX XXD

0 20000 40000 60000 80000 100000 120000 140000
Queries Per Second
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Reproducing tail latency effects from deployed
clusters

* Let’s run a similar experiment on
an 8 nOde ClUSter in FireSim: m 4 threads, 50th percentile

Nathan will show you how to
automatically build complex

workloads at 2:00pm

- 0 20000 40000 60000 80000 100000 120000 140000
Queries Per Second

0 0T 5 e 0 5 A3 O O 0 A R T G D 910 9 @ iR
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Open-Source

Berkeley Architecture Research



Productive Open-Source FPGA Simulation

e oithub.com/firesim/firesim, BSD Licensed

* An “easy” button for fast, FPGA-accelerated full-
system simulation, including single-node designs

* Plugin your own RTL designs, your own HW/SW models \

* One-click: Parallel FPGA builds, Simulation run/result collection,
building target software

e Scales to a variety of use cases:
* Networked (performance depends on scale)
* Non-networked (150+ MHz), limited by your budget

e firesimcommand line program
e Like docker or vagrant, but for FPGA sims

* User doesn’t need to care about distributed magic happening Y
behind the scenes

Berkeley Architecture Research FireSim Developer Environment 38


https://github.com/firesim/firesim

Productive Open-Source FPGA Simulation

* Scripts can call firesimto fully
automate distributed FPGA sim

* Reproducibility: included scripts to
reproduce ISCA 2018 results

e e.g. scripts to automatically run
SPECInt2017 reference inputs in =1 day

* Many others
* 100+ pages of documentation:
https://docs.fires.im

* AWS provides grants for
researchers:
https://aws.amazon.com/grants/

Berkeley Architecture Research 39

$ cd fsim/deploy/workloads
$ ./run-all.sh



https://docs.fires.im/
https://aws.amazon.com/grants/

What about non-datacenter targets?

Berkeley Architecture Research



Example use case: Evaluating SoC Designs w/SPEC

Get SPECInt2017 results w/reference inputs on Rocket Chip (or other CPU design) within
a day:

e Automatically using 10 or 11 FPGAs in parallel for intrate or intspeed

* FireSim manager takes care of all the heavy lifting/tedious management

What does it take to run SPECInt2017 rate on 10 rocket chips with FireSim?
cd firesim/deploy/workloads

make specl7-intrate # build a disk image for each spec bmark
firesim -c specl77intrate.ini launchrunfarm # launch 10 FPGA instances
firesim -c specl7intrate.ini infrasetup # copy root FS, linux, flash FPGAs

firesim -c specl77intrate.ini runworkload # run 10 bmarks on 10 FPGA

# instances, collect all results
# when this completes, all run logs/performance results found in
# firesim/deploy/results-workload/TIMESTAMP-specl7intrate/

# This takes < 1 day, with reference inputs (many benchmarks take much less)

Berkeley Architecture Research 41



Example use case: Evaluating SoC Designs w/SPEC

Get SPECInt2017 results w/reference inputs on Rocket Chip (or other CPU design) within
a day:

» Automatically using 10 or 11 FPGAs in parallel for intrate or intspeed

* FireSim manager takes care of all the heavy lifting/tedious management

MRkEl  Albert will show you how to run

cd firesii

Siresin = SPEC17 quickly at 2:30pm S

PGAs

firesim -
firesim -c specl7intrate.ini runworkload # run 10 bmarks on 10 FPGA

# instances, collect all results
# when this completes, all run logs/performance results found in
# firesim/deploy/results-workload/TIMESTAMP-specl7intrate/
# This takes < 1 day, with reference inputs (many benchmarks take much less)

Berkeley Architecture Research -



Easy to quickly collect large amts. of data on real

designs, even for a few grad students

e e.g. in our FASED [3] paper:

Benchmarks  Insns (T) D$ MPKI I$ MPKI

perlbench 2.98 2.99 9.0 8.9 10.0 10.1
gec 2.43 1.35 36.6 29.5 9.7 11.1
mcf 1.60 0.91 97.9 80.9 0.1 0.1

omnetpp 1.11 1.11 56.9 56.6 9.3 10.4

xalancbmk 1.21 1.21 62.9 62.9 7.9 7.6
x264 4.55 4.55 3.0 3.0 2.9 3.0

deepsjeng 2.51 2.14 8.7 8.2 15.4 15.3
leela 2.59 2.59 5.8 5.8 1.5 1.5

exchange?2 3.24 3.24 0.0 0.0 0.1 0.1
XZ 9.41 2.25 19.8 15.7 0.2 0.1

Table 5: Dynamic instruction counts and L1 MPKIs of
SPEC2017int rate and speed (single threaded), respectively.

Berkeley Architecture Research [3] Biancolin et. al., “FASED: FPGA-accelerated Simulation and Evaluation of DRAM”, FPGA’19 4



Easy to quickly collect large amts. of data on real

designs, even for a few grad students

e e.g. in our FASED [3] paper:

[ Single Cycle 2.00 - [ Single Cycle

1.75 I LLC No Refresh I LLC No Refresh
2. e B LLC Full Model g 1.73 B LLC Full Model
= Il No Refresh Full E 1.50 Bl No Refresh Full
§1.254 BN Model IS EE Model
5 5 1.25
¢ 1.00 g
a3 35 1.00 4
e} e
£ 0751 & 0.751
© ©
£ 0.50 £ 0.50
2 2

0.25 0.25

0.00 0.00

o3 NE < A\ *) X P o g% Q W+ < A X g o Vv Q
6\(/ (\é}fQQ (\JQ& q(, + (’),\Q,Q Q/(\(/ .(_Lb \Q/Q\ (\QQ/ \“éb {QQ <\Q‘}’QQ (\9@ QCJ + %\Q/(\q @(\(, -p/b \6Q> (\0)6 ®Q/’b
& & &K & & & & L L & L
© & Q F o Q er
intspeed intrate

Figure 5: Target-execution time of SPEC2017 intspeed and intrate (4 copies) with reference inputs for DRAM models with and
without refresh enabled. Runtime is normalized to that of a single-cycle memory system. LLCs, if present, are 256 KiB and
1MiB large for intspeed and intrate respectively and are 8-way set associative.

@ Berkeley Architecture Research 44
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Easy to quickly collect large amts. of data on real

designs, even for a few grad students

e e.g. in our FASED [3] paper:

[ No Cache
1.75 - Il 64 KiB 256
I KiB
1.501 BB 1 MiB Single
1.25 Il Cycle
Q
3
©1.00 4
(]
Q.
9 0.75 4
0.50 -
0.25 4
0.00
< > Q
N Q'}QQ 0@%— s + '\é\q @(\(‘5\ _{_Lb \eéb {\Cbé)/ @é"
SO S P
o 3 RZ & o O

intspeed

Figure 6: Speedup in SPEC2017 intspeed (reference inputs)
vs LLC model size. All caches are 8-way set associative.

Berkeley Architecture Research [3] Biancolin et. al., “FASED: FPGA-accelerated Simulation and Evaluation of DRAM”, FPGA’19 »



Easy to quickly collect large amts. of data on real

designs, even for a few grad students

e e.g. in our FASED [3] paper:

perlbench gec mcf omnetpp xalancbmk x264  deepsjeng leela  exchange2 XZ
ModelType hr f hr f hr f hr f hr f hr f hr f hr f hr f hr f

2 Single Cycle 14.4 95 20.4 73 24.7 62 13.8 67 14.0 68 129123 13.4 87 8.6 119 6.9 153 50.5 90
&, FCFS-256KB 14.7 100 20.8 91 25.6 102 14.1 86 14.5 83 13.1 125 13.6 91 8.6 121 6.9 153 51.8 105
n

FCFS 14.7 126  20.9 113 25.7 112 14.3 119 14.7 118 13.2 137 13.6 117 8.7 135 7.0 152 52.1 110
Single Cycle 31.6 50 28.5 38 33.3 36 37.1 35 36.6 37 208 79 258 44 149 73 7.0 151 22.6 51
FRFCFS-1MB 31.2 54 24.4 57 239 72 325 49 314 54 204 84 24.8 48 14.3 78 7.1 150 20.7 62
FRFCFS 21.6 111 19.6 98 20.2 104 27.3 9 22.8 110 15.9 125 15.4 110 11.4 120 7.0 152 16.4 107
Table 6: Simulation times (hours) and rates (f, MHz) for SPEC2017 intspeed and intrate (four copies) running on single and
quad-core Rocket Chip targets. In all cases, the FPGA-host frequency is 160 MHz.

Rate

L95 |
1.6 _4;,95
S 590 4
1.4 =
' r T T T T T T T 85 T T T T T T T
X
<210 =
§ T50 -
@ £
a) =)
5 ";25 .
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 S 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cycles (Trillions) Cycles (Trillions)

Figure 7: CPI, D$ MPKI, and row buffer and LLC hit rates running 641.leela_s with on Rocket with 256 KiB of LLC and a FCFS
MAS model. These plots use a rolling average of 10 samples spaced a billion cycles apart.

Berkeley Architecture Research [3] Biancolin et. al., “FASED: FPGA-accelerated Simulation and Evaluation of DRAM”, FPGA’19 46



FireSim Internals — Debugging

How do we introspect on FPGA-simulated
designs for correctness?

Berkeley Architecture Research



FireSim Debugging Tools

* Assertion Synthesis, Print Synthesis from DESSERT [2]
 Common software debugging primitives
e Automatic integration with simulation host
* Assertions helped identify BOOM bugs trillions of cycles into execution

* AutolLA: Easy-to-use Integrated Logic Analyzer (ILA) support
* User annotates interesting signals in the target design Chisel
* Rest of the wiring is automatic
» Use standard Vivado tools to control/collect data from ILA

* TraceRV Bridge: Rapidly Log RISC-V CPU State to Disk

* instruction address, raw instruction bits, privilege level, exception/interrupt
status and cause, valid signal

Berkeley Architecture Research 48



FireSim Debugging Tools

e Assertion Synthesis, Print Synthesis from DESSERT [2]
 Common software debugging primitives
e Automatic integration with simulation host

Alon will show you how to use

these at 3:30pm

* TraceRV Bridge: Rapidly Log RISC-V CPU State to Disk

* instruction address, raw instruction bits, privilege level, exception/interrupt
status and cause, valid signal

Berkeley Architecture Research 49



Features we won’t have time to cover
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Integrating Verilog designs

e Simulating Verilog designs with clock-gating FAME-1

* NVIDIA Deep Learning Accelerator (NVDLA) added to Rocket Chip in FireSim

» See: [9] F. Farshchi, et. al. Integrating NVIDIA Deep Learning Accelerator (NVDLA) with
RISC-V SoC on FireSim. EMC2'19)

* HLS-generated accelerators added to Rocket Chip in FireSim

* See: [5] Q. Huang, et. al. Centrifuge: Evaluating full-system HLS-generated heterogenous-
accelerator SoCs using FPGA-Acceleration. ICCAD’19

* Simulating Verilog designs with Yosys to FIRRTL compiler

* PicoRV32 successfully simulated in FireSim using Yosys FIRRTL compiler
* Verilog, RV32IMC, https://github.com/cliffordwolf/picorv32

* Current work on automating and generalizing the process
* Open-sourcing in mainline FireSim soon

Berkeley Architecture Research 51



What if my design doesn’t fit on one FPGA?
Golden Gate: an optimizing compiler for simulators

\
/

/,.d' °
A N
A N
/I;.-""" N XILINX®
~d [ VIRTEX.
5 ‘ U’traSCa[e_,_ ™
I "
{ ot - -

Replaces MIDAS, the original FireSim compiler

Berkeley Architecture Research [6] A. Magyar, D. Biancolin, et. al., “Golden Gate: Bridging The Resource Efficiency Gap Between ASICs and
- FPGA Prototypes”, ICCAD’19



Lots of other features that we’ll go through next

13:30 — 14:00: Building Hardware Designs in FireSim - David
14:00 — 14:30: Building Software Workloads in FireSim - Nathan

14:30 — 15:00: Running a FireSim Simulation: Password Cracking on a RISC-V
SoC with SHA-3 Accelerators and Linux - Albert

15:00 — 15:30: Coffee break

15:30 — 16:15: Instrumenting and Debugging FireSim-Simulated Designs -
Alon

16:15 — 16:55: FireSim Multi-FPGA Networked Simulation - Alon
16:55 — 17:00: Conclusion - Alon

Berkeley Architecture Research 53



Wrapping-up: Growing FireSim Community!

 Companies publicly announced using First academic users

FireSim e |SCA ‘18: Maas et. al. HW-GC Accelerator
* Esperanto Maxion ET (Berkeley)
e Intensivate IntenCore * MICRO “18: Zhang et. al. “Composable Building
) _ o Blocks to Open up Processor Design” (MIT)
* Projects with public FireSim support e Latest list @
* Rocket Chip, BOOM https://fires.im/publications/#userpapers

 Hwacha Vector Accelerator [11]

* Keystone Secure Enclave [12]

e https://github.com/keystone-enclave/keystone-
firesim

* NVIDIA Deep Learning Accelerator (NVDLA) [9]
e https://github.com/nvdla/firesim-nvdla
e https://devblogs.nvidia.com/nvdla/

 BOOM Spectre replication/mitigation [10]
* More in-progress! PR yours!

FireSim ISCA’18 paper selected as an IEEE Micro Top Pick of 2018 Arch. Confs and
as the CACM Research Highlights Nominee from ISCA’18

CCC/RV Summit tutorials
* > 200 attendees

Used in Berkeley’s CS152/252 Sp. 19
More than 80 mailing list members
More than 130 unique cloners per week
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FireSIm Recap

* We can simulate scalable-systems
built on arbitrary RTL at
unprecedented scale

+ Mix software models when desired

* Simulation is automatically built
and deployed

* Automatically deploy real
workloads and collect results

* Open-source, runs on Amazon EC2
F1, no capex

* Actively developed at UCB-BAR
Berkeley Architecture Research

é FireSim

—_ =

Automatically .-
deployed, high- ---“

performance,
distributed
simulation

Aggregation Pod

Aggregation Pod | Aggregation Pod
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FireSIm Papers

[1] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya
Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and Krste Asanovié. “FireSim: FPGA-Accelerated Cycle-Exact Scale-
Out System Simulation in the Public Cloud”. In proceedings of the 45th ACM/IEEE International Symposium on Computer Architecture (ISCA’18), Los

Angeles, CA, June 2018. Selected as one of IEEE Micro’s “Top Picks from Computer Architecture Conferences, 2018”".
https://sagark.org/assets/pubs/firesim-isca2018.pdf

[2] Donggyu Kim, Christopher Celio, Sagar Karandikar, David Biancolin, Jonathan Bachrach, and Krste Asanovi¢. “DESSERT: Debugging RTL Effectively with
State Snapshotting for Error Replays across Trillions of cycles”. In proceedings of the 28th International Conference on Field Programmable Logic &
Applications (FPL 2018), Dublin, Ireland, August 2018. https://sagark.org/assets/pubs/DESSERT-fpl2018.pdf

[3] David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig, Andrew Waterman, Jonathan Bachrach, Krste Asanovi¢. “FASED: FPGA-Accelerated
Simulation and Evaluation of DRAM”. In proceedings of the 27th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA,
February 2019. https://people.eecs.berkeley.edu/~biancolin/papers/fased-fpgal9.pdf

[4] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya
Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and Krste Asanovié. “FireSim: FPGA-Accelerated Cycle-Exact Scale-
Out System Simulation in the Public Cloud”. IEEE Micro, vol. 39, no. 3, pp. 56-65, (Micro Top Picks 2018 Issue). May-June 2019.
https://sagark.org/assets/pubs/firesim-micro-top-picks2018.pdf

[5] Qijing Huang, Christopher Yarp, Sagar Karandikar, Nathan Pemberton, Benjamin Brock, Liang Ma, Guohao Dai, Robert Quitt, Krste Asanovié¢, and John
Wawrzynek. “Centrifuge: Evaluating full-system HLS-generated heterogenous-accelerator SoCs using FPGA-Acceleration”. In proceedings of the 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, November 2019.
https://people.eecs.berkeley.edu/~qijing.huang/Centrifuge ICCAD.pdf

[6] Albert Magyar, David T. Biancolin, Jack Koenig, Sanjit Seshia, Jonathan Bachrach, Krste Asanovi¢, “Golden Gate: Bridging The Resource-Efficiency Gap
Between ASICs and FPGA Prototypes”. In proceedings of the 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster,
CO, November 2019. https://people.eecs.berkeley.edu/~biancolin/papers/goldengate-iccad19.pdf
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FireSim User Papers

[7] Martin Maas (UC Berkeley), Krste Asanovi¢ (UC Berkeley), John Kubiatowicz (UC Berkeley). “A Hardware Accelerator for Tracing
Garbage Collection”. In proceedings of the 45th ACM/IEEE International Symposium on Computer Architecture (ISCA’18), Los
Angeles, CA, June 2018. https://adept.eecs.berkeley.edu/wp-content/uploads/2018/06/A-Hardware-Accellerator-for-tracing-garbage-
Collection-Maas-6-2018.pdf

[8] Sizhuo Zhang (MIT), Andrew Wright (MIT), Thomas Bourgeat (MIT), Arvind (MIT). “Composable Building Blocks to Open up
Processor Design”. In proceedings of the 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’18), Fukuoka,
Japan, October 2018. https://people.csail.mit.edu/szzhang/paper/micro2018.pdf

[9] Farzad Farshchi (University of Kansas), Qijing Huang (UC Berkeley) and Heechul Yun (University of Kansas). “Integrating NVIDIA
Deep Learning Accelerator (NVDLA) with RISC-V SoC on FireSim”. In proccedings of The 2nd Workshop on Energy Efficient Machine
Learning and Cognitive Computing for Embedded Applications, at HPCA 2019, Washington D.C., February 2019. https://www.emc2-

workshop.com/assets/docs/hpca-19/paper3.pdf

[10] Abraham Gonzalez, Ben Korpan, Jerry Zhao, Ed Younis and Krste Asanovic. “Replicating and Mitigating Spectre Attacks on a Open
Source RISC-V Microarchitecture”. In proceedings of the Third Workshop on Computer Architecture Research with RISC-V (CARRV
2019), at ISCA 2019, Phoenix, AZ, June 2019. https://carrv.github.io/2019/papers/carrv2019 paper 5.pdf

[11] Alon Amid, Albert Ou, Krste Asanovi¢ and Borivoje Nikoli¢. “Nested-Parallelism PageRank on RISC-V Vector Multi-Processors”. In
proceedings of the Third Workshop on Computer Architecture Research with RISC-V (CARRV 2019), at ISCA 2019, Phoenix, AZ, June
2019. https://carrv.github.io/2019/papers/carrv2019 paper 8.pdf

[12] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn Song, Krste Asanovi¢. “Keystone: An Open Framework for Architecting
TEEs”. Arxiv Preprint.
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Learn More:
Web: https://fires.im

é I:i reSi m Docs: https://docs.fires.im

GitHub: https://github.com/firesim/firesim

Mailing List:
https://groups.google.com/forum/#!forum/firesim

@firesimproject

Questions?

Email: sagark@eecs.berkeley.edu

The information, data, or work presented herein was funded in part by the Advanced
Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award
Number DE-AR0000849, and by DARPA, Award Number HR0011-12-2-0016. Research
was also partially funded by ADEPT Lab industrial sponsors and affiliates Intel, Apple,
) Berkeley Architecture Research Futurewei, Google, and Seagate, and RISE Lab sponsor Amazon Web Services. The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.
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