
John Wright
UC Berkeley
johnwright@berkeley.edu

Hammer VLSI Flow



Tutorial Roadmap
Custom SoC 
Configuration

RTL Generators
RISC-V 
Cores

Multi-level 
Caches

Custom
VerilogPeripheralsAccelerators

Software RTL Simulation

VCS Verilator

FireSim FPGA-Accelerated Simulation

Simulation Debugging Networking

Automated VLSI Flow

Hammer Tech-
plugins

Tool-
plugins

RTL Build Process
FIRRTL 

TransformsFIRRTL IR Verilog

FireMarshal
Bare-metal &

Linux

Custom 
Workload

QEMU & Spike



Agenda

3

• VLSI flow
• Challenges in VLSI flows
• Hammer physical design flow principles
• How to use Hammer
• Demo SHA3 accelerator physical design flow



VLSI for Real Hardware

Remember this 
slide from the 
introduction?

Real hardware 
requires VLSI 

work!
4



An “Advertised” VLSI Flow

5

Logic 
Design Synthesis

Place-
and-

Route
Verilog Logic Gates Chip

Stan
dard

 Cell
s

Routin
g Rules

TCL script

TCL script



An “Advertised” VLSI Flow

6

Logic 
Design Synthesis

Place-
and-

Route
Verilog Logic Gates Chip

Stan
dard

 Cell
s

Routin
g Rules

TCL script

TCL script



A Real VLSI Flow

RTL is ready Foundry delivers PDK 
tarball

Unzip PDK; Slowly 
discover there are 
missing CAD-tool-

specific files

Send a few emails to 
the foundry Download a new PDK

Try running synthesis
Find out you are 

using the wrong time 
units and standard 

cell library

Iterate on synthesis 
for a week

Finally start place-
and-route

Power strap spec 
doesn't meet DRC, 

causes LVS problems

Fix power straps; 
Discover some 

standard cells have 
DRC problems when 

abutted

Fix DRC problems; 
continue with place-
and-route; discover 
the design misses 

timing

Spend a while fixing a 
timing path in the 
RTL, while noting 

what went wrong with 
the tool

Fix timing paths; tape 
out a chip

Switch to a new 
foundry and CAD 

vendor; throw all this 
work away

7



A Real VLSI Flow

8

• The physical design (VLSI) flow must be rebuilt for each project
• Overhead compounded by

• Changing CAD tool vendors
• Commands change. Features work/ don’t work 
• File formats / library locations

• Using a new process technology
• SRAMs (compiled/pre-generated?)
• New DRC rules

• Changing the design itself
• Floorplanning / power / clock

Tool 
Concerns

Design 
Concerns

Process 
Technology 
Concerns



Why So Complicated?

• Designs are getting bigger 
and more complex

• EDA industry evolution
• EDA tools evolve bottom-up 

through patches and 
acquisitions

• No [real] common exchange 
formats or APIs

• All physical design 
concerns mixed together

9

Magic TCL Script

Process 
Technology 
Concerns

Design 
Concerns

Tool 
Concerns



Why So Complicated?

• Designs are getting bigger 
and more complex

• EDA industry evolution
• EDA tools evolve bottom-up 

through patches and 
acquisitions

• No [real] common exchange 
formats or APIs

• All physical design 
concerns mixed together

10

Magic TCL Script

Process 
Technology 
Concerns

Design 
Concerns

Tool 
Concerns



Hierarchical Design

11

• Why hierarchical physical design?
• Modern chips are complex w/ prohibitively large 

place-and-route time
• Divide-and-conquer alleviates this problem

• Problem: Hierarchical isn’t “Free”
• Floorplanning is complicated

• Alignment of power straps, placement sites, and pins
• Tools want physical and logical hierarchies to 

match
• How to determine logical hierarchy?

• Constraining timing on the I/O boundaries
• Hammer helps simplify hierarchical flows

Top

C

A

AA

AA

A

AA

AA



Why So Complicated?

• Designs are getting bigger 
and more complex

• EDA industry evolution
• EDA tools evolve bottom-up 

through patches and 
acquisitions

• No [real] common exchange 
formats or APIs

• All physical design 
concerns mixed together

12

Magic TCL Script

Process 
Technology 
Concerns

Design 
Concerns

Tool 
Concerns



Some TCL code…

13

• Consider a hypothetical power strap creation command:

• Writing a line of TCL to place power straps contains:
• The command itself and its options (tool-specific)
• DRC-clean spacing, width, and direction information (technology-specific)
• Group pitch, domain, floorplan information (design-specific)

set some_proprietary_option M1
set some_other_proprietary_option M3
create_power_stripes -nets {VSS VDD} –layer M2 –direction vertical \
-via_start M1 –via_stop M3 –group_pitch 43.200 -spacing 0.216 -width 0.936 \
-area [get_bbox -of ModuleABC]  \
-start [expr [lindex [lindex [get_bbox –of ModuleABC] 0] 0] + 1.234]

# Repeat for each layer!

*Fake commands inspired by real commands due to EULA



Hammer “Separation of Concerns”
• Solution: Add a layer of abstraction

• Three categories of flow input
• Design-specific
• Tool/Vendor-specific
• Technology-specific

• Hammer Goal: specify all three 
separately

• Allow reusability
• Allow for multiple “small” experts instead 

of a single “super” expert
• Build abstractions/APIs on top

14

Design:
• Floorplan
• Clocks
• Hierarchy

Tool:
• In/out files
• TCL code
• Tech. file 

formats

Tech.:
• SRAMs
• Std. cells
• Stack-up
• Power straps



Design Concerns

15

Design Tool

Tech.

Separated 
Concerns• Floorplan

• Physical hierarchy
• Placement constraints
• Pin constraints

• Clock constraints: frequencies, pin delays, etc.
• Design modifications: retiming, scan insertion, etc.

• Solution: Store these in an Intermediate Representation (IR)
• Emit from high-level input source
• Consume by hammer to produce TCL commands and perform quality checks
• Need tool plugins to know what TCL to write!



Tool Concerns

16

Design Tool

Tech.

Separated 
Concerns

• Site-level problems
• Installation path, license servers, tool versions
• Allow these to be overridden by configuration files

• TCL command interface
• Not standardized between vendors!
• No commitment to preserve API across versions!

• Solution: Implement Python methods that emit TCL
• Some implement standard Hammer “steps”
• Some can be vendor-specific steps

• Solution: Codify in a “Tool Plugin”



Technology Concerns

17

Design

Tech.

Separated 
Concerns

Tool

• PDK
• Install directory
• Technology files
• Standard cells, SRAMs, other IP
• Available PVT (Process/Voltage/Temperature) corners

• Technology-specific TCL commands/snippets
• Include python methods that are included in the flow

• Solution: Codify in a “Technology Plugin”



Hammer IR

18

Design Tool

Tech.

Separated 
Concerns• Hammer IR codifies design information

• Also can override tech- and tool-specific settings
• Can be JSON or YAML (preferred)
• “Namespaces” separate categories of settings (e.g. vlsi.core)

# Specify clock signals vlsi.inputs.clocks: [
{name: "clock", period: "1ns", uncertainty: "0.1ns"}

]
# Generate Make include to aid in flow 
vlsi.core.build_system: make
# Pin placement constraints
vlsi.inputs.pin_mode: generated
vlsi.inputs.pin.generate_mode: semi_auto
vlsi.inputs.pin.assignments: [
{pins: "*", layers: ["M5", "M7"], side: "bottom"}

]



A Quick Example: Power Straps

19

X X

Y
… Z

Design

Separated 
Concerns

Tech.

Tool

• To specify power straps, need to know:
• DRC rules
• Target power dissipation
• IR drop spec
• Domain areas

• Hierarchical also adds physical constraints:
• Tiled modules require pitch-matching
• Easy to make mistakes when reworking



A Quick Example: Power Straps

20

X X

Y
… Z

Design

Separated 
Concerns

Tech.

Tool

• Don’t make the designer do math
• Codify design process in tech- and tool-agnostic code

• Method:
• Determine valid pitches for hierarchical design
• Automatically calculate offsets for hierarchical blocks
• Generate layout-optimal, DRC clean straps
• Specify intent at a higher-level than length units

• Example: Using ”By tracks” specification



A Quick Example: Power Straps

21

par.generate_power_straps_method: by_tracks
par.power_straps_mode: generate

Design Tool

Separated 
Concerns

Tech.

Choose power 

strap strategy



A Quick Example: Power Straps

22

par.generate_power_straps_options:
by_tracks:

track_width: 4

par.generate_power_straps_method: by_tracks
par.power_straps_mode: generate

4 tracks
VDD

4 tracks
VSS

Design Tool

Separated 
Concerns

Tech.

number of power domains =  2 (VDD, VSS)

tracks per group = 4 tracks x 2 domains = 8

Allocate tracks



A Quick Example: Power Straps

23

par.generate_power_straps_options:
by_tracks:

track_width: 4
power_utilization: 0.5

par.generate_power_straps_method: by_tracks
par.power_straps_mode: generate

4 tracks
VDD

8 tracks
routing

repeat...
(utilization = 50%)

4 tracks
VSS

Design Tool

Separated 
Concerns

Tech.

Group pitch = tracks per group / utilization

= 8 / 0.5 = 16

Determine pitch



A Quick Example: Power Straps

24

par.generate_power_straps_options:
by_tracks:

track_width: 4
power_utilization: 0.5
strap_layers:

- M3
- M4
- M5
- M6
- M7
- M8
- M9

par.generate_power_straps_method: by_tracks
par.power_straps_mode: generate

4 tracks
VDD

8 tracks
routing

repeat...
(utilization = 50%)

4 tracks
VSS

Design Tool

Separated 
Concerns

Tech.

Generate straps



A Quick Example: Power Straps

25

par.generate_power_straps_options:
by_tracks:

track_width: 4
power_utilization: 0.5
strap_layers:

- M3
- M4
- M5
- M6
- M7
- M8
- M9

par.generate_power_straps_method: by_tracks
par.power_straps_mode: generate

Route design

4 tracks
VDD

8 tracks
routing

repeat...
(utilization = 50%)

4 tracks
VSS

Design Tool

Separated 
Concerns

Tech.



A Quick Example: Power Straps

26

power_utilization: 0.05
track_width: 7 

power_utilization: 0.25
track_width: 13



How to use Hammer

27

• Hammer can be found under chipyard/vlsi/
• Need to obtain tool and tech plug-ins separately dues to NDAs and 

EULAs
• Welcome to the world of physical design…

• Priority use case is using proprietary CAD tools to build real chips
• We are working on open-source alternatives to proprietary CAD tools

• ”Real” technologies need an NDA
• Some ”Fake” technologies exist to allow example code sharing



Hammer User Decision Diagram

28

Evaluating Power/Area for a paper or 
closed-loop design space exploration

What Am I 
doing?

Making a chip

I have a custom Chipyard design

Help us develop an 
OpenROAD Plugin!

This is going to be 
hard… Good luck!

PDK NDA! (Lots of 
lawyers involved)

Hammer with 
ASAP 7!

I have 
access to 
CAD tools

I have 
access to 
CAD tools

Yes No Yes No



Hammer Demo with ASAP7

29

• This demo requires access to Cadence and Mentor CAD tool plugins. 
Due to licensing issues, access to these is controlled. Contact 
johnwright@berkeley.edu for more information.

• ASAP7 is a predictive-model PDK developed by Arizona State 
University. It is free to use for academic use, but requires payment for 
commercial use. More information is available here:
http://asap.asu.edu/asap/

• This demo will walk you through using Hammer without running the 
CAD tools. Intermediate files will be provided for you to examine.

mailto:johnwright@berkeley.edu
http://asap.asu.edu/asap/


Reusability

30

We want to get the SHA3 accelerator through a simple physical design 
process by mixing and reusing plug-ins other people wrote:
• Technology concerns

• Example ASAP7 plugin: chipyard/vlsi/hammer/src/hammer-vlsi/technology/asap7
• Tools concerns (under EULA):

• hammer-cadence-plugins: Genus (synthesis) & Innovus (P&R)
• hammer-synopsys-plugins: VCS (simulation)
• hammer-mentor-plugins: Calibre DRC & Calibre LVS



Hammer Plugins

31

Design Tool

Tech.

Separated 
Concerns

• Reminder: Two types of plugin: Tool and technology
• <tool> is usually of the format <action>/<name>
• e.g. par/innovus or syn/dc

• Tool plugins contain:
• <tool>/defaults.yml – overridable default settings for the tool
• <tool>/__init__.py – Reusable python methods that implement hammer APIs

• Technology plugins contain:
• <name>.tech.json – pointers to relevant PDK files
• defaults.yml – overridable default settings
• <name>_hooks/<tool>/__init__.py – Reusable python methods



What are we re-using? Tech plugin

32

You can view these at: chipyard/vlsi/hammer/src/hammer-vlsi/technology/asap7/defaults.yml

Design

Tech.

Separated 
Concerns

Tool

technology.core:
# This key should exist in the stackups list in the tech json
stackup: “asap7_3Ma_2Mb_2Mc_2Md”
# This should specify the TOPMOST metal layer the standard
#   cells use for power rails.
# Note that this is not usually stackup specific; It is based
#   on the std cell libraries themselves
std_cell_rail_layer: “M1”
# This is used to provide a reference master for generating power rails
tap_cell_rail_reference: “{TAPCELL*}”

# Set standard cell LEF placement site
vlsi.technology.placement_site: “coreSite”

# Set the layer that blocks vias under bumps
vlsi.technology.bump_block_cut_layer: “V9”



How do I write new tech plugin?

33

Turn unstructured information about the process 
technology into a structured representation:

Please refer to the Hammer docs at 
https://hammer-

vlsi.readthedocs.io/en/latest/Technology/index.html

Design

Tech.

Separated 
Concerns

Tool

https://hammer-vlsi.readthedocs.io/en/latest/Technology/index.html


What are we re-using? Tool plugin

34

Design Tool

Tech.

Separated 
Concerns

def init_environment(self) -> bool:
self.create_enter_script()
verbose_append = self.verbose_append

verbose_append(“set some_cad_variable 123”)
verbose_append(“read_corner_files {}”.format(mmmc_path))
if self.hierarchical_mode.is_nonleaf_hierarchical():

for module in self.get_input_modules():
verbose_append(“read_hier_module –name {}”.format(module))

lef_files = self.technology.read_libs([
hammer_tech.filters.lef_filter

], hammer_tech.HammerTechnologyUtils.to_plain_item)
verbose_append("read_lef {{ {files} }}".format(

files=" ".join(lef_files)))
# ... 

Ask us for access. Some commands are obfuscated so as not to violate EULAs.



How do I write new CAD plugin?

35

Implement Hammer IR APIs into the specific 
tool’s commands through Reusable python 

methods

Please refer to the Hammer docs at
https://hammer-vlsi.readthedocs.io/en/latest/CAD-

Tools/Tool-Plugin-Setup.html

Design Tool

Tech.

Separated 
Concerns

https://hammer-vlsi.readthedocs.io/en/latest/CAD-Tools/Tool-Plugin-Setup.html


Design Concerns

36

These are the meat of the physical design process in 
Hammer, and specified in the main project directory
• Integrating analog IP or other hard IP
• Floorplanning
• Clock and power
• Hierarchy assembly
• Boilerplate: selecting the process technology and tools

Design Tool

Tech.

Separated 
Concerns



Example Project Structure

37

• chipyard/vlsi
• example-vlsi – an extended hammer entry script with added steps (“hooks”)
• example.yml – project-specific HammerIR
• extra_libraries – a place for macro collateral (eg. .lib, .lef, .gds)

• For demo purposes, almost everything is in example.yml, but yml files 
can be separated for further organization

• env.yml – workplace-specific build and license settings
• To run with the default steps:

• hammer-vlsi -e env.yml -p example.yml syn
• To run with modified steps:

• example-vlsi -e env.yml -p example.yml syn

These will 
generate the 

relevant tcl scripts 
for the EDA tools}



example.yml – Tech Plugin Choice

38

• Choose the ASAP7 tech plug-in

# Technology Setup
# Technology used is ASAP7
vlsi.core.technology: asap7
# Specify dir with ASAP7 tarball
technology.asap7.tarball_dir: ""



example.yml – Tool Plugin Choice

39

• From hammer-cadence-
plugins:

• Genus 18.13 for Synthesis
• Innovus 18.1 for PnR

• For hammer-mentor-plugins:
• Calibre for DRC and LVS

• Note: Verify the tools 
installation path

• Note: ASAP7 cannot use 
Innovus version >18.1 (ISRs 
also don’t work)

# Tool options. Replace with your tool plugin of choice.
# Genus options
vlsi.core.synthesis_tool: "genus"
vlsi.core.synthesis_tool_path: ["hammer-cadence-
plugins/synthesis"]
vlsi.core.synthesis_tool_path_meta: "append"
synthesis.genus.version: "1813"
# Innovus options
vlsi.core.par_tool: "innovus"
vlsi.core.par_tool_path: ["hammer-cadence-plugins/par"]
vlsi.core.par_tool_path_meta: "append"
par.innovus.version: "181"
par.innovus.design_flow_effort: "standard"
par.inputs.gds_merge: true
# Calibre options
vlsi.core.drc_tool: "calibre"
vlsi.core.drc_tool_path: ["hammer-mentor-plugins/drc"]
vlsi.core.lvs_tool: "calibre"
vlsi.core.lvs_tool_path: ["hammer-mentor-plugins/lvs"]



example.yml – Power and Clocking

40

• Specify clock signal and constraints

• Specify Automatic generation of a simple power specification

# Specify clock signals
vlsi.inputs.clocks: [

{name: "clock", period: "1ns", uncertainty: "0.1ns"}
]

# Hammer will auto-generate a CPF for simple power designs; 
see hammer/src/hammer-vlsi/defaults.yml for more info
vlsi.inputs.power_spec_mode: "auto"
vlsi.inputs.power_spec_type: "cpf"



example.yml – Placement Constraints

41

• Placement constraints
• Top-level is Sha3AccelwBB

• Highlighted in yellow
• 300x300um with 1.08um margin on 

bottom (for DRC). highlighted blue
• Dummy hardmacro (“dco”) placed 

at (108, 108), no flipping
• Highlighted in green

vlsi.inputs.placement_constraints:
- path: "Sha3AccelwBB"
type: toplevel
x: 0
y: 0
width: 300
height: 300
margins:
left: 0
right: 0
top: 0
bottom: 0

- path: "Sha3AccelwBB/dco"
type: hardmacro
x: 108
y: 108
width: 128
height: 128
orientation: r0
top_layer: M9

- path: "Sha3AccelwBB/place_obs_bottom"
type: obstruction
obs_types: ["place"]
x: 0
y: 0
width: 300
height: 1.08



example.yml – Analog/Hard IP 

42

• Extra Libraries – Hard IP 
(analog blog, third party IP, 
etc.)

• Specify the collateral files for 
each corner

• Specify “physical only” cells
• Cells with no behavioral or 

other analysis details

• Include a “DCO” in the demo
• Digitally-Controlled Oscillator

# Paths to extra libraries
vlsi.technology.extra_libraries_meta: ["append", "deepsubst"]
vlsi.technology.extra_libraries:
- library:

nldm liberty file_deepsubst_meta: "local"
nldm liberty file: 

"extra_libraries/example/ExampleDCO_PVT_0P63V_100C.lib"
lef file_deepsubst_meta: "local"
lef file: "extra_libraries/example/ExampleDCO.lef"
gds file_deepsubst_meta: "local"
gds file: "extra_libraries/example/ExampleDCO.gds"
corner:
nmos: "slow"
pmos: "slow"
temperature: "100 C"

supplies:
VDD: "0.63 V"
GND: "0 V"

…
# Because the DCO is a dummy layout, 
# we treat it as a physical-only cell
par.inputs.physical_only_cells_mode: append
par.inputs.physical_only_cells_list:
- ExampleDCO



“Hooks”

43

• The “Magic TCL scripts” aren’t going away soon
• A lot of expertise captured in these scripts

• Hammer is still under development
• Least mature Chipyard project!
• Need to earn user confidence
• However, used in many real tapeouts

• Hooks enable insertion of custom python or TCL scripts within the 
Hammer-generated flow

• ”Escape hatches”
• Cleanly allows real-time development and workarounds
• Allows prototyping of future APIs



“Hooks” - Example

44

• Example of a technology-supplied hook
• ASAP7 runs a Python script from Innovus to scale down post-P&R GDS
• script_text is provided by the scale_gds_script method in ASAP7’s __init__.py
• There is no equivalent Hammer API for such scaling
• Inserted post write_design
• Other examples: Custom fiducial placement, endcap cell placement
def scale_final_gds(x: hammer_vlsi.HammerTool) -> bool:

x.append(‘‘‘
# Write script out to a temporary file and execute it
set fp [open "{script_file}" "w"]
puts -nonewline $fp "{script_text}"
close $fp

python3 {script_file}
‘‘‘.format(script_text=x.technology.scale_gds_script(x.output_gds_filename),
script_file=os.path.join(x.run_dir, "gds_scale.py")))

return True



example-vlsi

45

• Project-specific entry script extending hammer-vlsi
• Inserts/modifies/removes existing Hammer steps with “hooks”
• These are python methods that emit TCL

class ExampleDriver(CLIDriver):
def get_extra_par_hooks(self) -> List[HammerToolHookAction]:

extra_hooks = [

# make_pre_insertion_hook will execute the custom hook before the specified step
# hammer_vlsi.HammerTool.make_pre_insertion_hook("route_design", example_add_fillers),

# make_replacement_hook will replace the specified step with a custom hook
# hammer_vlsi.HammerTool.make_replacement_hook("place_tap_cells", example_place_tap_cells),

# make_removal_hook will remove the specified step from the flow
hammer_vlsi.HammerTool.make_removal_hook("place_bumps"),

# This is an example of a technology-supplied hook
hammer_vlsi.HammerTool.make_post_insertion_hook("write_design", scale_final_gds)

]
return extra_hooks



example.yml – Flow Make File

46

• Generate Makefiles with the relevant Hammer targets

• If you have access to a compute infrastructure (e.g. LSF)
• In your .yml, you can set the vlsi.submit.submit_command to lsf
• This will allow the submission of heavy and/or paralle jobs to a compute cluster. 

For example make –j drc lvs

• https://hammer-vlsi.readthedocs.io/en/latest/Hammer-Use/Buildfile.html

# Generate Make include to aid in flow 
vlsi.core.build_system: make

https://hammer-vlsi.readthedocs.io/en/latest/Hammer-Use/Buildfile.html


Logic 
Design Synthesis

Place-
and-

Route

Getting closer to the advertised flow

47

Verilog Logic Gates Chip

Stan
dard

 Cell
s

Routin
g Rules

TCL script

TCL script

• After we’ve setup the re-usable plug-ins and static custom design 
constraints



VLSI Flow Demo Video

48https://youtu.be/TiXeocDWdFA



Future of Hammer

49

• HammerIR lends itself well to generators
• Python floorplanning scripts to auto-calculate placement constraints
• WIP: Scala API so that physical design data can be tied to Chisel generator
• WIP: Composable floorplans using Aspect-Oriented Chisel
• WIP: Check floorplans for hierarchical alignment (grids & pitches)
• WIP: Generate clock constraints from FIRRTL

• Reconfiguring Chisel designs based on physical design feedback
• Additional signoff tools

• IR drop, dynamic power analysis, LEC
• More physical design APIs

• Pin placement, I/O timing budgeting



Summary

50

• Physical Design is hard—There are good reasons 
why most of the people in this room don’t do it.

• Chips are growing in complexity
• Un-natural evolution of the EDA/PDK stack

• Hammer helps separate design, tool, and 
technology concerns

• Enables re-use
• Enables advanced abstractions and generators

• Easy power and area evaluation
• Using Hammer, open source PDK, commercial EDA
• SHA3 demo

Design Tool

Tech.



Acknowledgements & Questions

51

Thanks to the hammer development team
Edward Wang, Colin Schmidt, Harrison Liew, Daniel Grubb

Questions?



Backup Slides

52



Running Synthesis

53

• Run make syn (Reminder: don’t actually run this. This is a demo)
• Inputs: RTL design (Verilog from FIRRTL)
• Outputs: technology-mapped gate-level netlist

• Example results (for demo purposes) in ~/hammer-asap7-demo-master
• Example Hammer build directory: build-example/syn-rundir
• Example output gate-level netlist: 
build-example/syn-rundir/Sha3AccelwBB.mapped.v

• Example output HammerIR for the next steps
build-example/syn-rundir/syn-output.json



Running Place-and-Route

54

• Run make par (Reminder: don’t actually run this. This is a demo)
• Inputs: synthesized netlist
• Outputs: routed gate-level netlist, GDSII (mask data)

• Example results (for demo purposes) in ~/hammer-asap7-demo-master
• Example Hammer build directory: build-example/par-rundir
• Example output netlists (with and without power nets): 
build-example/par-rundir/Sha3AccelwBB.lvs.v
build-example/par-rundir/Sha3AccelwBB.sim.v

• Example output HammerIR for the next steps
build-example/par-rundir/par-output.json



Viewing your “Chip”

55

• Navigate to chipyard/vlsi/ and run:
• ./view_gds.py ~/hammer-asap7-demo-master/build-example/par-rundir/Sha3AccelwBB.gds

• This will open up the GDS in a python-based layout viewer
• Note: There are much, much better proprietary alternatives to this

• By default, this will only display metals 2 through 4 and their vias
• Feel free to adjust in the view_gds.py script!
• Note: more layers take more time to draw
• Note: The standard cell layouts have been removed, so you’ll only see routing



Hammer Philosophy

56

• Separate fundamental design decisions into reusable methods

• Always allow overrides
• Designer can always write TCL to perform a task

• Use reasonable defaults
• Often a baseline is good enough – it can be modified later 

• Use agile software development
• Prototype features in project repos
• Upstream more generic versions of features to core hammer



Hammer Components

57

• A few submodules in chipyard/vlsi/
• Hammer

• Contains the backend framework and features described in this tutorial
• Hammer Tool Plugins

• Contains tool-specific implementations for the Hammer APIs
• hammer-cadence-plugins: Genus (synthesis) & Innovus (P&R)
• hammer-synopsys-plugins: VCS (simulation)
• hammer-mentor-plugins: Calibre DRC & Calibre LVS

• Hammer Tech Plugins
• Example ASAP7 plugin: chipyard/vlsi/hammer/src/hammer-vlsi/technology/asap7



The Make Infrastructure

58

• Look at chipyard/vlsi/Makefile
• We’ll use make commands that wrap the longer Hammer commands

• Run make buildfile (Reminder: don’t actually run this)
• Note: This is run implicitly, but it’s useful to do it explicitly
• This will elaborate RTL if it has not been elaborated already
• Based on the config, targets will be generated into build/hammer.d
• There are steps prefixed with redo- that allow the user to bypass dependencies

• Navigate to ~/hammer-asap7-demo-master/build-example
• Open hammer.d and look at the hammer driver commands it is running



Advanced Usage

59

• Finer control over steps to run
• E.g. --from_step, --to_step, --only_step for fast iteration
• Would like to have concept of database state to make this robust

• Make-based build infrastructure to manage dependencies



Specify The Hierarchical Example

60

Design Tool

Tech.

Separated 
Concerns

top_module: “Top”

manual_placement_constraints:
- Top
- {type: toplevel, … }

- vlsi.inputs.clocks: […]

Top



Hierarchical Example

61

Design Tool

Tech.

Separated 
Concerns

top_module: “Top”
manual_modules: 
- Top
- A
- C

manual_placement_constraints:
- Top
- {type: toplevel, … }
- {type: hierarchical, master: A,

path: Top/A_0, … }
- A
- {type: toplevel, … }

constraints:
- Top
- vlsi.inputs.clocks: […]

- A
- vlsi.inputs.pin.assignments: […]

Top
AA

C



Top

Hierarchical Example

62

Design Tool

Tech.

Separated 
Concerns

top_module: “Top”
manual_modules: 
- Top
- A
- C

- A
- AA

manual_placement_constraints:
- Top
- {type: toplevel, … }
- {type: hierarchical, master: A,

path: Top/A_0, … }
- A
- {type: toplevel, … }
- {type: hierarchical, master: AA,

path: A/AA_0, … }
constraints:
- Top
- vlsi.inputs.clocks: […]

- A
- vlsi.inputs.pin.assignments: […]

C

A

AA

AA

A

AA

AA



example.yml – Pin Placement

63

• SHA3 block integrated in a hierarchical design flow
• Need pins to connect to levels higher in the hierarchy
• semi_auto pin placement uses the CAD tool’s default pin distribution

• Pin Placement on metal layers M5, M7, 

# Pin placement constraints
vlsi.inputs.pin_mode: generated
vlsi.inputs.pin.generate_mode: semi_auto
vlsi.inputs.pin.assignments: [
{pins: "*", layers: ["M5", "M7"], side: "bottom"}

]



example.yml – Power Straps

64

• Generate power straps using the 
previously mentioned custom 
Hammer API (“by_tracks”)

• Auto-generate straps with 2um 
space to blockages 

• Maximizes width within track_width
(7) tracks while satisfying DRC 

• Override defaults per layer by 
appending _<layer>

• Example: power_utilization_M9

# Power Straps
par.power_straps_mode: generate
par.generate_power_straps_method: by_tracks
par.blockage_spacing: 2.0
par.generate_power_straps_options:
by_tracks:
strap_layers:
- M3
- M4
- M5
- M6
- M7
- M8
- M9

pin_layers:
- M9

track_width: 7 # minimum allowed for M2 & M3
track_spacing: 0
track_spacing_M3: 1
track_start: 10
power_utilization: 0.05
power_utilization_M8: 1.0
power_utilization_M9: 1.0


