

A Brief Tour of FireSim: The Manager & Compiler; Building Hardware Designs

https://fires.im

ISCA Tutorial 2023

Speaker: Junsun Choi (Original slides by Abraham Gonzalez)

Agenda: What Will We Cover?

- 1) The Compiler \rightarrow Golden Gate
- Invoke it on example RTL
- Inspect its outputs
- 2) The Manager \rightarrow firesim
- Explain how it's configured
- Demonstrate how it's used to build bitstreams

Where is FireSim in Chipyard?

With the software RTL simulators! ~/chipyard-afternoon/sims/firesim

→ This has been exported as \$FDIR

Interactive:

- # <ssh back onto your ec2 instance>
- \$ tmux new -s afternoon
- \$ cd \$FDIR
- \$ ls

FireSim's Directory Structure

sim/

- Golden Gate lives here
- Scala & C++ sources for additional FireSim models
- Make-based build system to invoke Golden Gate

deploy/

- Manager lives here
- FireSim workload definitions

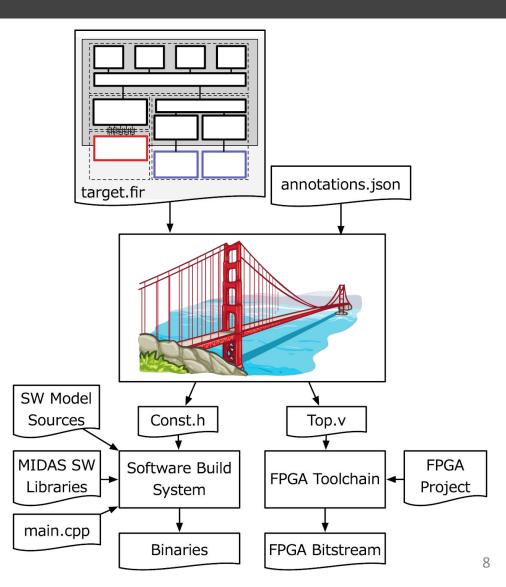
platforms/ \rightarrow FPGA platform definitions (e.g. AWS FPGA for F1, Xilinx Vitis for U250)

 sw/ \rightarrow target software & FireMarshal (more on this later)

Agenda: What Will We Cover?

- 1) The Compiler \rightarrow "Golden Gate"
- Invoke it on example RTL
- Inspect its outputs
- 2) The Manager \rightarrow firesim
- Explain how it's configured
- Demonstrate how it's used to build bitstreams

An Analogy


- Golden Gate is like Verilator but for FPGA-accelerated simulation
- Verilator generates C++ sources to simulate your design.
- \rightarrow Compile and run on a CPU-host
- Golden Gate generates C++ <u>& Verilog</u> to simulate your design. \rightarrow Compile and run on a hybrid CPU & FPGA host

Golden Gate Compiler

Inputs:

- FIRRTL & annos from a Chipyard generator
- Compiler configuration
- \rightarrow Produces sources for a simulator that are:
- deterministic
- support co-simulation of software models
- area-optimized to fit more on the FPGA

6

Interactive:

\$ cd \$FDIR/sim/generated-src/f1

\$ ls

here you'll find output directories for all builds

\$ cd <any-directory-here>

\$ ls

Inspecting the Outputs

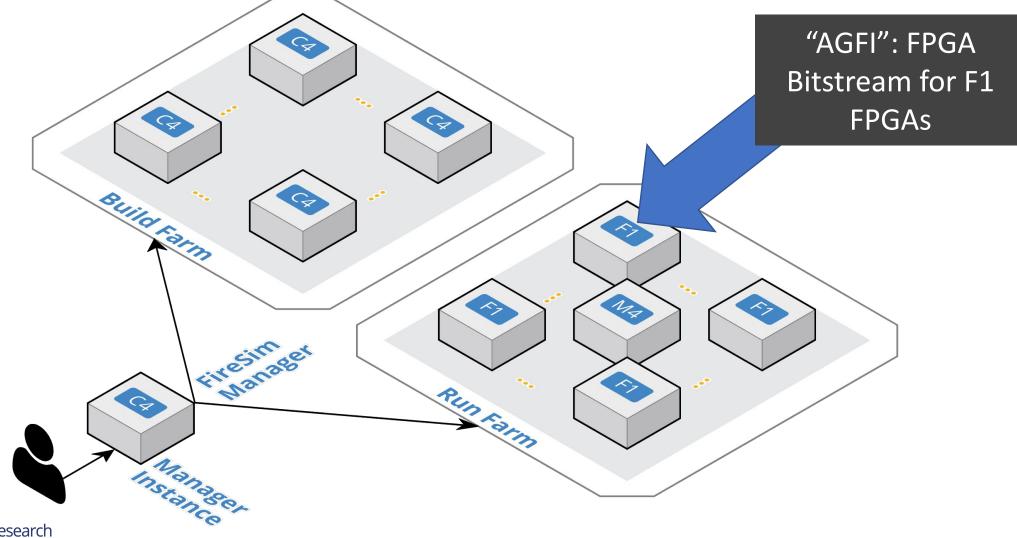
- <long-name>.fir & <long-name>.anno.json
- Target's FIRRTL & annotations

FireSim-generated.sv

• The compiled simulator

FireSim-generated.const.h

• Simulator's memory map



Agenda: What Will We Cover?

- 1) The Compiler \rightarrow Golden Gate
- Invoke it on example RTL
- Inspect its outputs
- 2) The Manager \rightarrow firesim
- Explain how it's configured
- Demonstrate how it's used to build bitstreams

Background Terminology

Using the firesim Manager Command Line

• Sourceme-manager.sh puts firesim on your path

- Can call firesim from anywhere on the instance
- It will always run from the directory:

\$FDIR/deploy/

After a fresh clone, need to call:

firesim managerinit --platform fl

\rightarrow You already did this at the start of the tutorial

Interactive:

\$ cd \$FDIR/deploy

\$ ls

Configuring the Manager. 4 files in firesim/deploy/

config build.yaml

base_recipe: build-farm-recipes/aws_ec2.yaml recipe ard overn # tag to apply to build farm hosts build farm tag: mainbuildfarm # instance type to use per build instance_type: z1d.2xlarge # instance market to use per build (ondemand, spot) ld_instance_market: ondemand # if using spot instances, determine the interrupt behavior (terminate, stop, hibernate)
spot_interruption_behavior: terminate # if using spot instances, determine the max price spot max price: ondemand # default location of build directory on build host default_build_dir: /home/centos/firesim-build

builds to run

this section references builds defined in config build recipes.vaml # if you add a build here, it will be built when you run buildbitstream

Unnetworked designs use a three-domain configuration # Tiles: 1000 MHz # <Rational Crossing # Uncore: 500 MHz <Async Crossing> # DRAM : 1000 MHz firesim_rocket_quadcore_no_nic_12_11c4mb_ddr3 firesim_boom_singlecore_no_nic_12_11c4mb_ddr3

All NIC-based designs use the legacy FireSim frequency selection, with the # tiles and uncore running at 3.2 GHz to sustain 200Gb theoretical NIC BW

firesim_supernode_rocket_singlecore_nic_12_lbp firesim_rocket_quadcore_nic_12_11c4mb_ddr3 firesim_boom_singlecore_nic_12_11c4mb_ddr3 # Configs for tutorials firesim_rocket_singlecore_no_nic_12_1bp

- firesim_rocket_singlecore_sha3_nic_12_llc4mb_ddr3

- firesim rocket singlecore sha3 no nic 12 11c4mb ddr3 # - firesim_rocket_singlecore_sha3_no_nic_12_llc4mb_ddr3_printf

- firesim_gemmini_rocket_singlecore_no_nic

- firesim gemmini printf rocket singlecore no nic

Configs for Vitis/XRT # - vitis_firesim_rocket_singlecore_no_nic # - vitis_firesim_gemmini_rocket_singlecore_no_nic

Configs for Xilinx Alveo U250/U280 # - alveo u250 firesim rocket singlecore no nic # - alveo u280 firesim rocket singlecore no nic

Config for Xilinx VCU118 # - xilinx_vcu118_firesim_rocket_singlecore_4GB_no_nic

Config for RHSResearch Nitefury II # - nitefury_firesim_rocket_singlecore_no_nic

agfis_to_share firesim_rocket_quadcore_nic_12_11c4mb_ddr3 firesim rocket quadcore no nic 12 11c4mb ddr3 firesim_boom_singlecore_no_nic_12_11c4mb_ddr3

firesim_boom_singlecore_nic_12_11c4mb_ddr3 firesim_supernode_rocket_singlecore_nic_12_lbp

Configs for tutorials

- firesim_rocket_singlecore_no_nic_12_lbp

- # firesim rocket singlecore sha3 nic 12 llc4mb ddr3 # - firesim_rocket_singlecore_sha3_no_nic_12_11c4mb_ddr3
- # firesim rocket singlecore_sha3_no_nic_12_llc4mb_ddr3_printf

share with accounts # To share with a specific user:

dysname: 123456789012 # To share publicly: public: public

Berkeley Architecture Research

config build recipes.yaml

Build-time build recipe configuration for the FireSim Simulation Manager # See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Confic

this file contains sections that describe hardware designs that /can/ be # edit config_build.yaml to actually "turn on" a config to be built when yc # buildbitstream

############

Schema: ############ # <NAME>: DESIGN: <> TARGET_CONFIG: <> PLATFORM CONFIG: Config deploy_quintuplet: null # NOTE: these platform_config_args are for F1 only # they should be set to null if using another platform platform_config_args: fpga_frequency: null build_strategy: null post build hook: null metasim_customruntimeconfig: "path to custom runtime config for metasi bit_builder_recipe: # OPTIONAL: overrides for bit builder recipe # Arg structure should be identical to the args given # in the base_recipe. #bit_builder_arg_overrides: # <ARG>: <OVERRIDE> # Quad-core, Rocket-based recipes **# REQUIRED FOR TUTORIALS** firesim rocket quadcore nic 12 11c4mb ddr3: PLATFORM: f1 TARGET_PROJECT: firesim **DESIGN:** FireSim TARGET_CONFIG: WithNIC_DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_WithF PLATFORM_CONFIG: WithAutoILA_BaseF1Config deploy_quintuplet: null platform_config_args: fpga frequency: 90 build_strategy: TIMING post_build_hook: null metasim_customruntimeconfig: null

bit_builder_recipe: bit-builder-recipes/f1.yaml # NB: This has a faster host-clock frequency than the NIC-based design, bec # its uncore runs at half rate relative to the tile. firesim_rocket_quadcore_no_nic_12_11c4mb_ddr3: PLATFORM: f1 TARGET_PROJECT: firesim **DESIGN:** FireSim TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_WithFireSimTe PLATFORM_CONFIG: WithAutoILA_BaseF1Config deploy_quintuplet: null platform_config_args: fpga_frequency: 140 build_strategy: TIMING post build hook: null metasim customruntimeconfig: null

bit_builder_recipe: bit-builder-recipes/f1.yaml

config hwdb.yaml

Hardware config database for FireSim Simulation Manager # See https://docs.fires.im/en/stable/Advanced-Usage/Manager.

Hardware configs represent a combination of an agfi, a dep # (if needed), and a custom runtime config (if needed)

The AGFIs provided below are public and available to all us # Only AGFIs for the latest release of FireSim are guarantee # If you are using an older version of FireSim, you will need # own images.

DOCREF START: Example HWDB Entry firesim_boom_singlecore_nic_12_llc4mb_ddr3: agfi: agfi-0aac270576e64693c deploy_quintuplet_override: null custom runtime config: null # DOCREF END: Example HWDB Entry firesim_boom_singlecore_no_nic_12_llc4mb_ddr3: agfi: agfi-02f92e7c011ef6e19 deploy_quintuplet_override: null custom_runtime_config: null firesim_gemmini_printf_rocket_singlecore_no_nic: agfi: agfi-0ace16d35c5758893 deploy_quintuplet_override: null custom_runtime_config: null firesim_gemmini_rocket_singlecore_no_nic: agfi: agfi-05eec5fb565f7cfa3 deploy quintuplet override: null custom runtime config: null firesim rocket quadcore nic 12 llc4mb ddr3: agfi: agfi-0455e4c2892076c1a deploy quintuplet override: null custom_runtime_config: null firesim rocket quadcore no nic 12 llc4mb ddr3: agfi: agfi-09eeb63f4fae0929e deploy_quintuplet_override: null custom_runtime_config: null firesim_rocket_singlecore_sha3_nic_12_11c4mb_ddr3: agfi: agfi-02e4056f9bec5a240 deploy quintuplet override: null custom_runtime_config: null firesim_rocket_singlecore_sha3_no_nic_12_llc4mb_ddr3: agfi: agfi-0d8abef077c23a4de deploy_quintuplet_override: null custom_runtime_config: null firesim_rocket_singlecore_sha3_no_nic_12_llc4mb_ddr3_printf: agfi: agfi-033e840230f51668f deploy quintuplet override: null custom_runtime_config: null

config runtime.yaml

RUNTIME configuration for the FireSim Simulation Manager # See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-F

base_recipe: run-farm-recipes/aws_ec2.yaml # tag to apply to run farm hosts un farm tag; mainrunfarm # enable expanding run farm by run_farm_hosts given always_expand_run_farm: true # minutes to retry attempting to request instances # run farm host market to use (ondemand, spot) instance_market: ondemand # if using spot instances, determine the interrupt behavior (terminate, stop, hi on behavior: terminate # if using spot instances, determine the max price pot_max_price: ondemand # default_location of the simulation directory on the run farm host default_simulation_dir: /home/centos

run farm hosts to spawn: a mapping from a spec below (which is an EC2 # instance type) to the number of instances of the given type that you # want in your runfarm. f1.16xlarge: 0 f1.2xlarge: 1 - m4.16xlarge: 6

metasimulation enabled: false # vcs or verilator. use vcs-debug or verilator-debug for waveform generation metasimulation_host_simulator: verilator # plusargs passed to the simulator for all metasimulations tion only plusargs: "+fesyr-step-size=128 +max-cycles=100000000" # plusargs passed to the simulator ONLY FOR vcs metasimulations tion only vcs plusargs: "+vcs+initreg+0 +vcs+initmem+0

topology: no_net_config no_net_num_nodes: 1 link_latency: 6405 switching_latency: 10 net_bandwidth: 200 profile interval: -1

This references a section from config_hwdb.yaml for fpga-accelerated simulatio # or from config_build_recipes.yaml for metasimulation # In homogeneous configurations, use this to set the hardware config deployed # for all simulators
default_hw_config: firesim_gemmini_printf_rocket_singlecore_no_nic

Advanced: Specify any extra plusargs you would like to provide when # booting the simulator (in both FPGA-sim and metasim modes). This is # a string, with the contents formatted as if you were passing the plusargs # at command line, e.g. "+a=1 +b=2"

enable: no

Trace output formats. Only enabled if "enable" is set to "yes" above # 0 = human readable; 1 = binary (compressed raw data); 2 = flamegraph (stack # unwinding -> Flame Graph) output format: 8

0 = no trigger; 1 = cycle count trigger; 2 = program counter trigger; 3 = # instruction trigger start: 0 end: -1

read_rate: 0

workload_name: linux-uniform.json suffix_tag: null

Configuring a Build

config_build.yaml

Build-time build design / AGFI configuration for the FireSim # See https://docs.fires.im/en/stable/Advanced-Usage/Manager/M

this refers to build farms defined in config_build_farm.yaml build_farm:

base_recipe: build-farm-recipes/aws_ec2.yaml
recipe_arg_overrides:

tag to apply to build farm hosts build_farm_tag: mainbuildfarm # instance type to use per build instance_type: z1d.2xlarge # instance market to use per build (ondemand, spot) build_instance_market: ondemand # if using spot instances, determine the interrupt behavio spot_interruption_behavior: terminate # if using spot instances, determine the max price

spot_max_price: ondemand

default location of build directory on build host
default_build_dir: /home/centos/firesim-build

builds_to_run:

this section references builds defined in config_build_r
if you add a build here, it will be built when you run b

Unnetworked designs use a three-domain configuration
Tiles: 1000 MHz

- # <Rational Crossing>
- # Uncore: 500 MHz
- # <Async Crossing>

DRAM : 1000 MHz

- firesim_rocket_quadcore_no_nic_12_11c4mb_ddr3
- firesim_boom_singlecore_no_nic_12_11c4mb_ddr3

All NIC-based designs use the legacy FireSim frequency s # tiles and uncore running at 3.2 GHz to sustain 200Gb the

config_build_recipes.yaml

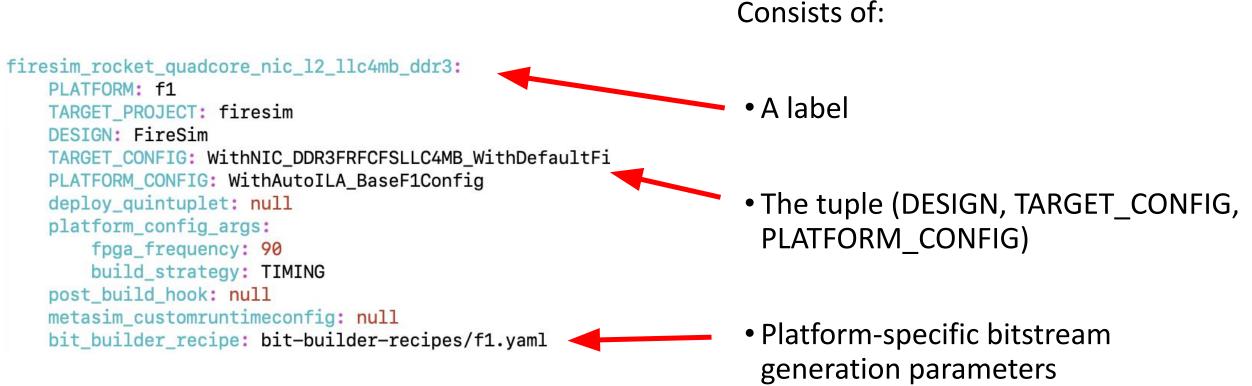
Build-time build recipe configuration for the FireSim Simulation Manager # See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configura

this file contains sections that describe hardware designs that /can/ be bui
edit config_build.yaml to actually "turn on" a config to be built when you r
buildbitstream

############

Schema:

###########


<NAME>:

- # DESIGN: <>
- # TARGET_CONFIG: <>
- # PLATFORM_CONFIG: Config
- # deploy_quintuplet: null
- # **NOTE**: these platform_config_args are for F1 only
- # they should be set to null if using another platform
- # platform_config_args:
- fpga_frequency: null
- # build_strategy: null
- # post_build_hook: null
- # metasim_customruntimeconfig: "path to custom runtime config for metasims"
- # bit_builder_recipe:
- # # OPTIONAL: overrides for bit builder recipe
- # # Arg structure should be identical to the args given
- # # in the base_recipe.
- # #bit_builder_arg_overrides:
- # # <ARG>: <OVERRIDE>

Quad-core, Rocket-based recipes
REQUIRED FOR TUTORIALS
firesim_rocket_quadcore_nic_l2_llc4mb_ddr3:
 PLATFORM: f1
 TARGET_PROJECT: firesim
 DESIGN: FireSim
 TARGET_CONFIG: WithNIC_DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_WithFire
 PLATFORM_CONFIG: WithAutoILA_BaseF1Config
 deploy_quintuplet: null
 platform_config_args:
 fpga_frequency: 90
 build_strategy: TIMING
 post_build_hook: null
 metasim_customruntimeconfig: null
 bit builder recipe: bit-builder-recipes/f1.vaml

Anatomy of a Build Recipe

config_build_recipes.yaml

WithNIC_DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_Wit hFireSimHighPerfConfigTweaks_chipyard.QuadRocketConfig

erkeley Architecture Research

Defining a Build Job: config build.yaml

build_farm:

managerinit replace start

base_recipe: build-farm-recipes/aws_ec2.yaml
Uncomment and add args to override defaults.
Arg structure should be identical to the args given
in the base_recipe.
recipe_arg_overrides:
<ARG>: <OVERRIDE>
managerinit replace end

builds_to_run:

this section references builds derined in config_build # if you add a build here, it will be built when you run

Unnetworked designs use a three-domain configuration # Tiles: 1600 MHz

<Rational Crossing>

- # Uncore: 800 MHz
- # <Async Crossing>
- # DRAM : 1000 MHz
- firesim_rocket_quadcore_no_nic_l2_llc4mb_ddr3
- firesim_boom_singlecore_no_nic_l2_llc4mb_ddr3

All NIC-based designs use the legacy FireSim frequency s
tiles and uncore running at 3.2 GHz to sustain 200Gb the

- firesim_supernode_rocket_singlecore_nic_l2_lbp
- firesim_rocket_guadcore_nic_l2_llc4mb_ddr3

Consists of:

Build host platform configuration

• A list of recipes you'd like to batch out to a build farm

Defining a Build Job: config build.yaml

- firesim_rocket_quadcore_nic_l2_llc4mb_ddr3
- firesim_boom_singlecore_nic_l2_llc4mb_ddr3

Configs for tutorials

- # firesim_rocket_singlecore_no_nic_l2_lb
- # firesim_rocket_singlecore_sha3_nic_l2_llc4mb_ddr3
- # firesim_rocket_singlecore_sha3_no_nic_l2_llc4mb_ddr3
- # firesim_rocket_singlecore_sha3_no_nic_l2_llc4mb_ddr3_

agfis_to_share:

- firesim_roc____quadcore_nic_l2_llc4mb_ddr3
- firesim_rocket_quadcore_no_nic_l2_llc4mb_ddr3
- firesim_boom_singlecore_no_nic_l2_llc4mb_ddr3
- firesim_boom_singlectre_nic_l2_llc4mb_ddr3

- firesim_supernode_rocket_singlecore_nic_l2_lbp

Configs for tutorials

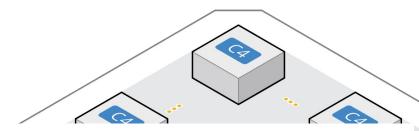
- # firesim_rocket_singlecore_no_nic_t2 lbp
- # firesim_rocket_singlecore_sha3_nic_lt_llc4mb_ddr3
- # firesim_rocket_singlecore_sha3_no_nic_l2_llc4mb_ddr3
- # firesim_rocket_singlecore_sha3_no_nic_l2_lts4mb_ddr3_

share_with_accounts:

To share with a specific user: somebodysname: 123456789012

To share publicly
#public: public

Once you're done with builds:


• A list of recipes you'd like to share with other users

Running builds

- Once we've configured *what* we want to build, let's build it
- \$ firesim buildbitstream
- This completely automates the process. For each design, in-parallel:
 - Launch a build instance
 - Generate target RTL & invokes Golden Gate
 - Ship infrastructure to build instances, run Vivado FPGA builds in parallel
 - Collect results back onto manager instance
 - \$FDIR/deploy/results-build/<TIMESTAMP>- <tuple>/
 - Email you the entry to put into config hwdb.yaml
 - Terminate the build instance

AWS Notifications <no-reply@sns.amazonaws.com> to me -

Your AGFI has been created! Add

firesim_rocket_singlecore_no_nic_l2_lbp: agfi: agfi-0e27eb94672e2f5a9 deploy_triplet_override: null custom_runtime_config: null

to your config_hwdb.yaml to use this hardware configuration.

Anatomy of a HWDB Entry

firesim_rocket_quadcore_nic_l2_llc4mb_ddr3:
 agfi: agfi-0c45d995a46cce5dc
 deploy_triplet_override: null
 custom_runtime_config: null

- Same label as before
- The FPGA image

Hooks to change:

- Software models
- Runtime arguments

 \rightarrow Without FPGA recompilation

Summary

- Don't fret if you didn't catch everything, everything we showed you today is documented in excruciating detail at https://docs.fires.im
- We learned how to:
 - Build FireSim FPGA images for a set of targets
 - <u>https://docs.fires.im/en/stable/Building-a-FireSim-AFI.html</u>

