
1

SoC Architecture and Components
Jerry Zhao

Use Cases

2

Custom SoC architecture
New blocks + reusing

existing blocks

RTL Simulation running test
binaries/micro-benchmarks

FPGA-accelerated simulation
running full workloads

FPGA prototyping for fast
cool demos

Tape-out the SoC to get actual
silicon results

Organization

3

What is Chipyard?
• An organized framework for

various SoC design tools
• A curated IP library of

open-source RISC-V SoC
components

• A methodology for agile SoC
architecture design,
exploration, and evaluation

• A tapeout-ready chassis for
custom RISC-V SoCs

4

SoC architecture and
generators

Organization

SoC Architecture

5

Digital SoC Architecture

RocketTile
Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
A

ccelerator

MMIO
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2

Bank
L2

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM
Chan.

DRAM
Chan.

Tiles and Cores

6

Digital SoC Architecture

RocketTile
Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
A

ccelerator

MMIO
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2

Bank
L2

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM
Chan.

DRAM
Chan.

Tiles:
• Each Tile contains a RISC-V core

and private caches
• Several varieties of Cores

supported
• Interface supports integrating your

own RISC-V core implementation

Chisel Cores

7

Chisel RISC-V Cores

8

Rocket: 5-stage single-issue in-order
SonicBOOM: 12-stage superscalar out-of-order
Shuttle: [NEW] 6-stage superscalar in-order

IBUF

IA

PULP Cores in

9

CVA6 (Formerly Ariane):
• RV64IMAC 6-stage single-issue in-order core
• Open-source
• Implemented in SystemVerilog
• Developed at ETH Zurich as part of PULP,
• Now maintained by OpenHWGroup

Ibex (Formerly Zero-RISCY):
• RV64IMC 2-stage single-issue in-order core
• Open-source
• Implemented in SystemVerilog
• Developed at ETH Zurich as part of PULP
• Now maintained by lowRISC

Sodor Education Cores

10

Sodor Core Collection
• Collection of RV32IM cores for

teaching and education
• 1-stage, 2-stage, 3-stage, 5-stage

implementations
• Micro-coded “bus-based”

implementation
• Used in introductory computer

architecture courses at Berkeley

RISC-V
Sodor Micro-coded

RoCC Accelerators

11

Digital SoC Architecture

RocketTile
Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
A

ccelerator

MMIO
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2

Bank
L2

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM
Chan.

DRAM
Chan.

RoCC Accelerators:
• Tightly-coupled accelerator interface
• Attach custom accelerators to Rocket

or BOOM cores
• Included example implementations

Chisel RISC-V
Core

L1I$ L1D$

PTWTLBs
Custom

Accelerator
Impl

L2

SystemBus

Peripheral

MMIO Accelerators

12

Digital SoC Architecture

RocketTile
Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
A

ccelerator

MMIO
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2

Bank
L2

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM
Chan.

DRAM
Chan.

MMIO Accelerators:
• Controlled by MMIO-mapped

registers
• Supports DMA to memory system
• Examples:

• Nvidia NVDLA accelerator
• FFT accelerator generator

Coherent Interconnect

13

Digital SoC Architecture

RocketTile
Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
A

ccelerator

MMIO
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2

Bank
L2

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM
Chan.

DRAM
Chan.

TileLink Standard:
• TileLink is open-source chip-scale

interconnect standard
• Comparable to AXI/ACE
• Supports multi-core, accelerators,

peripherals, DMA, etc
Interconnect IP:
• Library of TileLink RTL generators

provided in RocketChip
• RTL generators for crossbar-based

buses
• Width-adapters, clock-crossings, etc.
• Adapters to AXI4, APB
• New: Drop-in prefetchers

Protocol Shims

14

CVA6WrapperTile

CVA6 Verilog
CVA6
Core PTW

L1I$ L1D$

AXI4Bus

AXI4ToTL

NVDLA Wrapper

NVDLA Verilog

NVDLA

AXI4 DMA

AXI4ToTL

AMBA-to-TileLink shims enable
easy integration with existing IP
• Works for
cores/peripherals/accelerators

• Drop-in Verilog integration of
CVA-6, NVDLA

NoC Interconnect

15

Digital SoC Architecture

RocketTile
Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
A

ccelerator

MMIO
Accelerator

Constellation Network-on-Chip
Interconnect

Control Bus

UART GPIOs
L2

Bank
L2

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM
Chan.

DRAM
Chan.

Constellation
• Drop-in replacement for TileLink

crossbar buses

Constellation
A parameterized Chisel
generator for SoC
interconnects
• Protocol-independent
transport layer

• Supports TileLink, AXI-4
• Highly parameterized
• Deadlock-freedom
• Virtual-channel
wormhole-routing

16

L2/DRAM

17

Digital SoC Architecture

RocketTile
Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
A

ccelerator

MMIO
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2

Bank
L2

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM
Chan.

DRAM
Chan.

Shared memory:
• Open-source TileLink L2 developed by

SiFive
• Directory-based coherence with

MOESI-like protocol
• Configurable capacity/banking

• Support broadcast-based coherence in
no-L2 systems

• Support incoherent memory systems
DRAM:
• AXI-4 DRAM interface to external

memory controller
• Interfaces with DRAMSim

Peripherals and IO

18

Digital SoC Architecture

RocketTile
Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
A

ccelerator

MMIO
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2

Bank
L2

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM
Chan.

DRAM
Chan.

Peripherals and IO:
• Open-source RocketChip blocks

• Interrupt controllers
• JTAG, Debug module, BootROM
• UART, GPIOs, SPI, I2C, PWM,

etc.
• TestChipIP: useful IP for test chips

• Clock-management devices
• SerDes
• Scratchpads

SoC Architecture

19

Digital SoC Architecture

RocketTile
Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
A

ccelerator

MMIO
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2

Bank
L2

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM
Chan.

DRAM
Chan.

Spike Integration

20

Spike Tile

libspike::processor_t

DPI Call

MMIO
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2

Bank
L2

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM
Chan.

DRAM
Chan.

Spike-as-a-Tile:
• DPI interface between RTL SoC

simulation and SoC functional
model

• Spike “virtual platform”
• Enables testing of complex device

software in RTL simulation

Spike Integration
Spike: original fast C++ RISC-V functional model
Spike-as-a-Tile (Spike Virtual Platform):
• RTL-implemented memory system driven by Spike CPU model
• Useful for debugging/prototyping software for custom devices

Spike-Cosimulation:
• Lock-step commit-trace checking of a RTL core against Spike

reference model
• Useful for debugging cores

Spike-driven restartable architectural checkpointing:
• Generate a checkpoint in Spike, replay it in RTL simulation
• Useful for fast-forwarding to interesting regions of long programs

21

Chisel

22

• Chisel – Hardware Construction Language built on Scala
• What Chisel IS NOT:

• NOT Scala-to-gates
• NOT HLS
• NOT tool-oriented language

• What Chisel IS:
• Productive language for generating hardware
• Leverage OOP/Functional programming paradigms
• Enables design of parameterized generators
• Designer-friendly: low barrier-to-entry, high reward
• Backwards-compatible: integrates with Verilog black-boxes

Chisel FIRRTL Verilog VLSI

Chisel VLSI

Chisel Example

23

// Generalized FIR filter parameterized by coefficients

class FirFilter(bitWidth: Int, coeffs: Seq[Int]) extends Module {

 val io = IO(new Bundle {

 val in = Input(UInt(bitWidth.W))

 val out = Output(UInt(bitWidth.W))

 })

 val zs = Wire(Vec(coeffs.length, UInt(bitWidth.W)))

 zs(0) := io.in

 for (i <- 1 until coeffs.length) {

 zs(i) := RegNext(zs(i-1))

 }

 val products = zs zip coeffs map {

 case (z, c) => z * c.U

 }

 io.out := products.reduce(_ + _)

}

Flexible parameters:
• Enables development of highly flexible,

parameterized HW generators

HDL, not HLS:
• Designers reason about wires, registers,

gates, IO, etc.
• Familiar Wire, Reg, IO constructs makes

Chisel beginner-friendly

Designer-friendly features
• Powerful OOP/functional programming

paradigms
• Strict type-checking encourages

“correct-by-construction” design

Learning Chisel

24

This tutorial does not expect any familiarity of Chisel

Many resources for learning Chisel
• Step-by-step tutorial:
https://github.com/ucb-bar/chisel-tutorial

• Jupyter notebook:
https://github.com/freechipsproject/chisel-bootcamp

• Chisel Textbook:
https://www.imm.dtu.dk/~masca/chisel-book.html

https://github.com/freechipsproject/chisel-bootcamp
https://www.imm.dtu.dk/~masca/chisel-book.html

25

Organization

26

SoC Configuration

Organization

Composable Configurations

27

Digital SoC Architecture

RocketTile
Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
A

ccelerator

MMIO
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2

Bank
L2

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM
Chan.

DRAM
Chan.

class CustomConfig extends Config(
 new WithL1CacheWays(4) ++
 new WithAsyncTiles ++
 new WithSystemBusWidth(128) +
 new WithFPGemmini ++
 new With3WideBooms ++
 new WithL2TLBs(512) ++
 new WithL2Sets(1024) ++

 new WithDefaultGemmini ++
 new WithNRocketCores(1) ++
 new WithNBoomCores(1) ++
 new WithBootROM ++
 new WithUART ++
 new WithJtagDTM ++
 new WithGPIOs ++
 new WithInclusiveCache(512) ++
)

28

Organization

29

Organization
SW RTL Simulation:
• RTL-level simulation with

Verilator or VCS
• Hands-on tutorial next
FPGA prototyping:
• Fast, non-deterministic

prototypes
• Bringup platform for taped-out

chips
Hammer VLSI flow:
• Tapeout a custom config in

some process technology
• Overview of flow later
FireSim:
• Fast, accurate

FPGA-accelerated simulations
• Hands-on tutorial later

30

Organization

IO and Harness configuration

Multipurpose

31

ChipHarness

ChipTop

DigitalTop

IO
C

ell

IO
C

ell

IO
C

ell

IO
C

ell

A
nalog

S
erdes

P
LL

FMC

Tethered FPGA

TestHarness

ChipTop

DigitalTop

D
R

A
M

S
im

.cc

S
im

U
A

R
T.cc

S
im

G
P

IO
s.cc

S
im

JTA
G

.cc

S
im

S
erial.cc

TestD
river.v

FireSimHarness

ChipTop

DigitalTop

A
X

I4B
ridge

U
A

R
TB

ridge

S
erialB

ridge

C
lockB

ridge

FASED Host
UART

Host
Serial

Clock
Driver

Digital System configuration

Chip IO configuration

Harness Configuration

Configuring IO + Harness

32

class CustomConfig extends Config(
 new WithDefaultGemmini ++
 new WithNRocketCores(1) ++
 new WithNBoomCores(1) ++
 new WithBootROM ++
 new WithUART ++
 new WithJtagDTM ++
 new WithGPIOs ++
 new WithInclusiveCache(512) ++

 new WithIOCellModels ++

 new WithDRAMSim ++
 new WithSimUART ++
 new WithSimJTAG ++
 new WithSimSerial

)

TestHarness

ChipTop

DigitalTop

D
R

A
M

S
im

.cc

S
im

U
A

R
T.cc

S
im

G
P

IO
s.c

c

S
im

JTA
G

.cc

S
im

S
erial.cc

TestD
river.v

Digital
System

Chip IO

Harness

Digital Config

IO Binders

Harness Binders

33

Organization

34

Organization

FIRRTL/CIRCT Transforms

• Chisel programs generate FIRRTL
representations of hardware

• FIRRTL passes transform the target
netlist
• FireSim’s AutoCounter/AutoILA/Printf use

FIRRTL passes
• VLSI flows can use FIRRTL passes to

adjust the module hierarchy

• NEW in Chipyard 1.9.1:
CIRCT Backend
• CIRCT generates tool-friendly

synthesizable Verilog from FIRRTL
• Very fast/powerful FIRRTL compiler

Elaboration Flow

35

Chisel
Generators

design.fir

FIRRTL Passes

SRAM Macro
Replacement

Hierarchy
Manipulation

design.fir

CIRCT passes

Optimization Deduplication

ChipTop.sv Harness.sv

FIRRTL

36

FIRRTL emits tool-friendly, synthesizable Verilog

C/C++

Rust

LLVM IR

LLVM PassManager x86 assembly

Dead code
elimination

Statistics
collection Optimization ARM

assembly

Chisel

Verilog

FIRRTL IR

FIRRTL Passes Verilog for
SW Sim

Dead
expression
elimination

Statistics
collection

Netlist
manipulation Verilog for

FPGA Sim

FIRRTL Passes
FireSim passes:
• Bridge target assertions/printfs

to be visible on the host PC
• Provide FPGA utilization

optimizations
• Implement debugging and

analysis features (AutoILA,
AutoCounter)

37

VLSI passes:
• Restructure module hierarchy
• Replace target memories with

foundry SRAMs

FIRRTL provides an abstraction layer
between implementation and tooling

38

Organization
Configs: Describe
parameterization of a
multi-generator SoC
Generators: Flexible, reusable
library of open-source Chisel
generators (and Verilog too)
IOBinders/HarnessBinders:
Enable configuring IO strategy
and Harness features
FIRRTL/CIRCT Passes:
Structured mechanism for
supporting multiple flows
Target flows: Different use-cases
for different types of users

39

Learning Curve

Exploratory-level
• Configure a custom SoC from pre-existing

components
• Generate RTL, and simulate it in RTL level

simulation
• Evaluate existing RISC-V designs

Evaluation-level
• Integrate or develop custom hardware IP into

Chipyard
• Run FireSim FPGA-accelerated simulations
• Push a design through the Hammer VLSI flow
• Build your own system

Advanced-level
• Configure custom IO/clocking setups
• Develop custom FireSim extensions
• Integrate and tape-out a complete SoC

40

For Education
Proven in many Berkeley Architecture
courses
• Hardware for Machine Learning
• Undergraduate Computer Architecture
• Graduate Computer Architecture
• Advanced Digital ICs
• Tapeout HW design course

Advantages of common shared HW
framework
• Reduced ramp-up time for students
• Students learn framework once, reuse it in

later courses
• Enables more advanced course projects

(tapeout a chip in 1 semester)

41

For Tapeouts
Standard Chipyard “Flow” For Tapeout

1. RTL Development – Develop new
accelerators/devices and test rapidly

2. FireSim – Evaluate your design on real
workloads

3. Hammer - Reusable/extensible VLSI
flow

4. Bringup – generate FPGA bringup
platforms using Chipyard

Chipyard is a single-source-of-truth for a
chip
• Enables parallel workflows across

different parts of the flow
• Reproducible environments simplify

debugging
• Continuous integration for tapeouts

chipyard-coolchip.git

RTL Simulations Phys.
Design

Bringup

42

Taping-out Chips in Class

43

Spring 2021
• 18 mostly masters/PhD
• 1 mm2 TSMC 28nm
• 16 weeks from architecture to tapeout
• BLE mixed-signal IoT chip

Spring 2022
• ~40 mostly undergrads
• 2 x 4 mm2 Intel 16nm
• 16 weeks from architecture to tapeout
• BLE mixed-signal IoT chip
• Heterogeneous RISC-V SoC for

sparse-ML and ISP

44

• Add new accelerators for emerging applications
• Modify OS/driver/software
• Perform design-space exploration across many parameters
• Test and evaluate in RTL-simulation, FireSim
• Tapeout using HAMMER VLSI flow

For Research

45

Community
Documentation:
• https://chipyard.readthedocs.io/en/de

v/
• 133 pages
• Most of today’s tutorial content is

covered there

Mailing List:
• google.com/forum/#!forum/chipyard

Open-sourced:
• All code is hosted on GitHub
• Issues, feature-requests, PRs are

welcomed

https://chipyard.readthedocs.io/en/dev/
https://chipyard.readthedocs.io/en/dev/
https://groups.google.com/forum/#!forum/chipyard

46

An open, extensible research and
design platform for RISC-V SoCs
• Unified framework of
parameterized generators

• One-stop-shop for RISC-V SoC
design exploration

• Supports variety of flows for
multiple use cases

• Open-sourced, community and
research-friendly

