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Use Cases
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Custom SoC architecture
New blocks + reusing 

existing blocks

RTL Simulation running test 
binaries/micro-benchmarks

FPGA-accelerated simulation 
running full workloads

FPGA prototyping for fast 
cool demos

Tape-out the SoC to get actual 
silicon results



Organization
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What is Chipyard?
• An organized framework for 

various SoC design tools
• A curated IP library of 

open-source RISC-V SoC 
components

• A methodology for agile SoC 
architecture design, 
exploration, and evaluation

• A tapeout-ready chassis for 
custom RISC-V SoCs
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SoC architecture and 
generators

Organization



SoC Architecture
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Digital SoC Architecture
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Tiles and Cores
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Digital SoC Architecture
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Tiles:
• Each Tile contains a RISC-V core 

and private caches
• Several varieties of Cores 

supported
• Interface supports integrating your 

own RISC-V core implementation



Chisel Cores
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Chisel RISC-V Cores
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Rocket: 5-stage single-issue in-order
SonicBOOM: 12-stage superscalar out-of-order
Shuttle: [NEW] 6-stage superscalar in-order

IBUF

IA



PULP Cores in 
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CVA6 (Formerly Ariane):
• RV64IMAC 6-stage single-issue in-order core
• Open-source
• Implemented in SystemVerilog
• Developed at ETH Zurich as part of PULP,
• Now maintained by OpenHWGroup

Ibex (Formerly Zero-RISCY):
• RV64IMC 2-stage single-issue in-order core
• Open-source 
• Implemented in SystemVerilog
• Developed at ETH Zurich as part of PULP
• Now maintained by lowRISC



Sodor Education Cores
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Sodor Core Collection
• Collection of RV32IM cores for 

teaching and education
• 1-stage, 2-stage, 3-stage, 5-stage 

implementations
• Micro-coded “bus-based” 

implementation
• Used in introductory computer 

architecture courses at Berkeley

RISC-V 
Sodor Micro-coded



RoCC Accelerators
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Digital SoC Architecture

RocketTile
Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
A

ccelerator

MMIO 
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2 

Bank
L2 

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM 
Chan.

DRAM 
Chan.

RoCC Accelerators:
• Tightly-coupled accelerator interface
• Attach custom accelerators to Rocket 

or BOOM cores
• Included example implementations
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Custom 
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MMIO Accelerators
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Digital SoC Architecture
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MMIO Accelerators:
• Controlled by MMIO-mapped 

registers
• Supports DMA to memory system
• Examples:

• Nvidia NVDLA accelerator
• FFT accelerator generator



Coherent Interconnect
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Digital SoC Architecture
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TileLink Standard:
• TileLink is open-source chip-scale 

interconnect standard
• Comparable to AXI/ACE
• Supports multi-core, accelerators, 

peripherals, DMA, etc
Interconnect IP:
• Library of TileLink RTL generators 

provided in RocketChip
• RTL generators for crossbar-based 

buses
• Width-adapters, clock-crossings, etc.
• Adapters to AXI4, APB
• New: Drop-in prefetchers



Protocol Shims

14

CVA6WrapperTile

CVA6 Verilog
CVA6 
Core PTW

L1I$ L1D$

AXI4Bus

AXI4ToTL

NVDLA Wrapper

NVDLA Verilog

NVDLA

AXI4 DMA

AXI4ToTL

AMBA-to-TileLink shims enable 
easy integration with existing IP
• Works for 
cores/peripherals/accelerators

• Drop-in Verilog integration of 
CVA-6, NVDLA



NoC Interconnect
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Digital SoC Architecture
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Constellation
• Drop-in replacement for TileLink 

crossbar buses



Constellation
A parameterized Chisel 
generator for SoC 
interconnects
• Protocol-independent 
transport layer

• Supports TileLink, AXI-4
• Highly parameterized
• Deadlock-freedom
• Virtual-channel 
wormhole-routing

16



L2/DRAM
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Digital SoC Architecture
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Shared memory:
• Open-source TileLink L2 developed by 

SiFive
• Directory-based coherence with 

MOESI-like protocol
• Configurable capacity/banking

• Support broadcast-based coherence in 
no-L2 systems

• Support incoherent memory systems
DRAM:
• AXI-4 DRAM interface to external 

memory controller
• Interfaces with DRAMSim



Peripherals and IO
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Digital SoC Architecture
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Peripherals and IO:
• Open-source RocketChip blocks

• Interrupt controllers
• JTAG, Debug module, BootROM
• UART, GPIOs, SPI, I2C, PWM, 

etc.
• TestChipIP: useful IP for test chips

• Clock-management devices
• SerDes
• Scratchpads



SoC Architecture
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Digital SoC Architecture
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Spike Integration
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Spike Tile
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Spike-as-a-Tile:
• DPI interface between RTL SoC 

simulation and SoC functional 
model

• Spike “virtual platform”
• Enables testing of complex device 

software in RTL simulation



Spike Integration
Spike: original fast C++ RISC-V functional model
Spike-as-a-Tile (Spike Virtual Platform):
• RTL-implemented memory system driven by Spike CPU model
• Useful for debugging/prototyping software for custom devices

Spike-Cosimulation:
• Lock-step commit-trace checking of a RTL core against Spike 

reference model
• Useful for debugging cores

Spike-driven restartable architectural checkpointing:
• Generate a checkpoint in Spike, replay it in RTL simulation
• Useful for fast-forwarding to interesting regions of long programs
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Chisel
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• Chisel – Hardware Construction Language built on Scala
• What Chisel IS NOT:

• NOT Scala-to-gates
• NOT HLS
• NOT tool-oriented language

• What Chisel IS:
• Productive language for generating hardware
• Leverage OOP/Functional programming paradigms
• Enables design of parameterized generators
• Designer-friendly: low barrier-to-entry, high reward
• Backwards-compatible: integrates with Verilog black-boxes

Chisel FIRRTL Verilog VLSI

Chisel VLSI



Chisel Example
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// Generalized FIR filter parameterized by coefficients

class FirFilter(bitWidth: Int, coeffs: Seq[Int]) extends Module {

  val io = IO(new Bundle {

    val in = Input(UInt(bitWidth.W))

    val out = Output(UInt(bitWidth.W))

  })

  val zs = Wire(Vec(coeffs.length, UInt(bitWidth.W)))

  zs(0) := io.in

  for (i <- 1 until coeffs.length) { 

    zs(i) := RegNext(zs(i-1))

  }

  val products = zs zip coeffs map { 

    case (z, c) => z * c.U

  }

  io.out := products.reduce(_ + _)

}

Flexible parameters:
• Enables development of highly flexible, 

parameterized HW generators

HDL, not HLS: 
• Designers reason about wires, registers, 

gates, IO, etc.
• Familiar Wire, Reg, IO constructs makes 

Chisel beginner-friendly

Designer-friendly features
• Powerful OOP/functional programming 

paradigms
• Strict type-checking encourages 

“correct-by-construction” design



Learning Chisel
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This tutorial does not expect any familiarity of Chisel

Many resources for learning Chisel
• Step-by-step tutorial: 
https://github.com/ucb-bar/chisel-tutorial

• Jupyter notebook: 
https://github.com/freechipsproject/chisel-bootcamp 

• Chisel Textbook: 
https://www.imm.dtu.dk/~masca/chisel-book.html 

https://github.com/freechipsproject/chisel-bootcamp
https://www.imm.dtu.dk/~masca/chisel-book.html
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Organization
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SoC Configuration

Organization



Composable Configurations
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Digital SoC Architecture
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class CustomConfig extends Config(
  new WithL1CacheWays(4) ++
  new WithAsyncTiles ++
  new WithSystemBusWidth(128) +
  new WithFPGemmini ++
  new With3WideBooms ++
  new WithL2TLBs(512) ++
  new WithL2Sets(1024) ++

  new WithDefaultGemmini ++
  new WithNRocketCores(1) ++
  new WithNBoomCores(1) ++
  new WithBootROM ++
  new WithUART ++
  new WithJtagDTM ++
  new WithGPIOs ++
  new WithInclusiveCache(512) ++
)
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Organization
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Organization
SW RTL Simulation:
• RTL-level simulation with 

Verilator or VCS
• Hands-on tutorial next
FPGA prototyping:
• Fast, non-deterministic 

prototypes
• Bringup platform for taped-out 

chips
Hammer VLSI flow:
• Tapeout a custom config in 

some process technology
• Overview of flow later
FireSim:
• Fast, accurate 

FPGA-accelerated simulations
• Hands-on tutorial later



30

Organization

IO and Harness configuration



Multipurpose
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Configuring IO + Harness
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class CustomConfig extends Config(
  new WithDefaultGemmini ++
  new WithNRocketCores(1) ++
  new WithNBoomCores(1) ++
  new WithBootROM ++
  new WithUART ++
  new WithJtagDTM ++
  new WithGPIOs ++
  new WithInclusiveCache(512) ++

  new WithIOCellModels ++

  new WithDRAMSim ++
  new WithSimUART ++
  new WithSimJTAG ++
  new WithSimSerial

)
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Organization
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Organization

FIRRTL/CIRCT Transforms



• Chisel programs generate FIRRTL 
representations of hardware

• FIRRTL passes transform the target 
netlist
• FireSim’s AutoCounter/AutoILA/Printf use 

FIRRTL passes
• VLSI flows can use FIRRTL passes to 

adjust the module hierarchy

• NEW in Chipyard 1.9.1: 
CIRCT Backend
• CIRCT generates tool-friendly 

synthesizable Verilog from FIRRTL
• Very fast/powerful FIRRTL compiler

Elaboration Flow
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Chisel 
Generators
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FIRRTL Passes

SRAM Macro 
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FIRRTL
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FIRRTL emits tool-friendly, synthesizable Verilog

C/C++

Rust

LLVM IR

LLVM PassManager x86 assembly

Dead code 
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Statistics 
collection Optimization ARM 

assembly

Chisel

Verilog
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FIRRTL Passes Verilog for 
SW Sim

Dead 
expression 
elimination

Statistics 
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Netlist 
manipulation Verilog for 

FPGA Sim



FIRRTL Passes
FireSim passes:
• Bridge target assertions/printfs 

to be visible on the host PC
• Provide FPGA utilization 

optimizations
• Implement debugging and 

analysis features (AutoILA, 
AutoCounter)
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VLSI passes:
• Restructure module hierarchy
• Replace target memories with 

foundry SRAMs

FIRRTL provides an abstraction layer 
between implementation and tooling
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Organization
Configs: Describe 
parameterization of a 
multi-generator SoC
Generators: Flexible, reusable 
library of open-source Chisel 
generators (and Verilog too)
IOBinders/HarnessBinders: 
Enable configuring IO strategy 
and Harness features
FIRRTL/CIRCT Passes: 
Structured mechanism for 
supporting multiple flows
Target flows: Different use-cases 
for different types of users



39

Learning Curve

Exploratory-level
• Configure a custom SoC from pre-existing 

components
• Generate RTL, and simulate it in RTL level 

simulation
• Evaluate existing RISC-V designs

Evaluation-level
• Integrate or develop custom hardware IP into 

Chipyard
• Run FireSim FPGA-accelerated simulations
• Push a design through the Hammer VLSI flow
• Build your own system

Advanced-level
• Configure custom IO/clocking setups
• Develop custom FireSim extensions
• Integrate and tape-out a complete SoC



40

For Education
Proven in many Berkeley Architecture 
courses
• Hardware for Machine Learning
• Undergraduate Computer Architecture
• Graduate Computer Architecture
• Advanced Digital ICs
• Tapeout HW design course

Advantages of common shared HW 
framework
• Reduced ramp-up time for students
• Students learn framework once, reuse it in 

later courses
• Enables more advanced course projects 

(tapeout a chip in 1 semester)
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For Tapeouts
Standard Chipyard “Flow” For Tapeout

1. RTL Development – Develop new 
accelerators/devices and test rapidly

2. FireSim – Evaluate your design on real 
workloads

3. Hammer -  Reusable/extensible VLSI 
flow

4. Bringup – generate FPGA bringup 
platforms using Chipyard

Chipyard is a single-source-of-truth for a 
chip
• Enables parallel workflows across 

different parts of the flow
• Reproducible environments simplify 

debugging
• Continuous integration for tapeouts

chipyard-coolchip.git

RTL Simulations Phys. 
Design

Bringup
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Taping-out Chips in Class
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Spring 2021
• 18 mostly masters/PhD
• 1 mm2 TSMC 28nm
• 16 weeks from architecture to tapeout
• BLE mixed-signal IoT chip

Spring 2022
• ~40 mostly undergrads
• 2 x 4 mm2 Intel 16nm
• 16 weeks from architecture to tapeout
• BLE mixed-signal IoT chip
• Heterogeneous RISC-V SoC for 

sparse-ML and ISP
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• Add new accelerators for emerging applications
• Modify OS/driver/software
• Perform design-space exploration across many parameters
• Test and evaluate in RTL-simulation, FireSim
• Tapeout using HAMMER VLSI flow

For Research
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Community
Documentation:
• https://chipyard.readthedocs.io/en/de

v/
• 133 pages
• Most of today’s tutorial content is 

covered there

Mailing List:
• google.com/forum/#!forum/chipyard 

Open-sourced:
• All code is hosted on GitHub
• Issues, feature-requests, PRs are 

welcomed

https://chipyard.readthedocs.io/en/dev/
https://chipyard.readthedocs.io/en/dev/
https://groups.google.com/forum/#!forum/chipyard
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An open, extensible research and 
design platform for RISC-V SoCs
• Unified framework of 
parameterized generators

• One-stop-shop for RISC-V SoC 
design exploration

• Supports variety of flows for 
multiple use cases

• Open-sourced, community and 
research-friendly


