

Running a FireSim Simulation:
Password Strength Checking on a
RISC-V SoC with SHA-3
Accelerators and Linux

https://fires.im

ISCA Tutorial 2022

Albert Ou

Tutorial Roadmap

Agenda

- Configure and launch a simulation runfarm
- Boot Linux interactively on the target hardware
- Deploy new automated workloads
- Stress the SHA-3 accelerator with a complex Linux application (John the Ripper)

Prerequisites

- Interactive shell commands intended to be run during the tutorial are highlighted in blue blocks (prefixed by "\$")
- Some simplifying assumptions about the shell environment:
 - The \$FDIR variable refers to the top directory of FireSim
 - env.sh and sourceme-f1-manager.sh have been sourced

```
$ cd ~/chipyard-afternoon
$ source ./env.sh
$ cd sims/firesim
$ FDIR=$PWD
$ source ./sourceme-f1-manager.sh
```


Prefetching

- We will later be setting up and launching simulations
- To hide setup latency, edit \$FDIR/deploy/config_runtime.yaml to match
 the following settings:

```
run_farm:
   recipe_arg_overrides:
      run_farm_hosts_to_use:
      - f1.2xlarge: 1

target_config:
      topology: no_net_config
      no_net_num_nodes: 1
      default_hw_config: firesim_rocket_singlecore_no_nic_12_lbp
```


Prefetching

- We will later be setting up and launching simulations
- To hide setup latency:
 - Append the following entry to config hwdb.yaml:

Make sure there are no duplicate entries

• Verify that it follows this format (with a unique AGFI ID):

```
firesim_rocket_singlecore_no_nic_l2_lbp:
    agfi: agfi-0e27eb94672e2f5a9
    deploy_triplet_override: null
    custom_runtime_config: null
```

In case firesim
buildbitstream did not
finish in time, a pre-populated
entry is provided for you to use

Prefetching

- We will later be setting up and launching simulations
- To hide setup latency, run the following commands:
- First verify that you aren't inside another tmux session.
- If so, detach from the existing tmux session using Ctrl+b then d.

```
$ tmux new -s sim
$ firesim launchrunfarm && firesim infrasetup
```


What did we just do?

Runtime Configuration

What to simulate and what infrastructure is required is controlled by

\$FDIR/deploy/config_runtime.yaml

- Target-level: Assemble a simulated system from components
 - FPGA images of SoC hardware designs
 - Network topology
 - Workload definition
- Host-level: Specify which EC2 instances to use

The run_farm section specifies the number, type, and other launch parameters of instances to be managed

```
run farm:
 base recipe: run-farm-recipes/aws ec2.yaml
 recipe arg overrides:
   run farm tag: mainrunfarm
   always expand run farm: true
   launch instances timeout minutes: 60
   run instance market: ondemand
   spot interruption behavior: terminate
   spot max price: ondemand
   default simulation dir: /home/centos
```


The run_farm section specifies the number, type, and other launch parameters of instances to be managed

```
run farm:
 base recipe: run-farm-recipes/aws ec2.yaml
  recipe arg overrides:
    run farm hosts to use:
      - f1.16xlarge: 0
      - f1.4xlarge: 0
      - f1.2xlarge: 0
      - m4.16xlarge: 0
      - z1d.3xlarge: 0
      - z1d.6xlarge: 0
      - z1d.12xlarge: 0
```


The target_config section specifies the high-level configuration of the system to simulate

```
target_config:
    topology: example_8config
    no_net_num_nodes: 2
    link_latency: 6405
    switching_latency: 10
    net_bandwidth: 200
    profile_interval: -1
    default_hw_config: firesim_rocket_quadcore_nic_12_llc4mb_ddr3
    plusarg_passthrough: ""
```

default hw config references an entry from config hwdb.yaml

The workload section specifies the software to be executed on the simulated nodes

```
workload:
    workload_name: linux-uniform.json
    terminate_on_completion: no
    suffix_tag: null
```

Workload definitions live in \$FDIR/deploy/workloads/*.json

Other miscellaneous sections:

- metasimulation
- tracing: TracerV trace port capture
- autocounter: Out-of-band performance counter collection
- host debug: DRAM zeroing, synthesized assertions
- synthprint: Synthesized print statements

(These will be explained further in the debugging session)

Testing the new AGFI

- By now, the buildbitstream run that you started at the very beginning of this tutorial should have finished
- Add the hardware entry to config hwdb.yaml:

First remove the old entry, if any

• Verify that it follows this format (with a unique AGFI ID):

```
firesim_rocket_singlecore_no_nic_12_lbp:
    agfi: agfi-0e27eb94672e2f5a9
    deploy_triplet_override: null
    custom_runtime_config: null
```

In case firesim
buildbitstream did not
finish in time, a pre-populated
entry is provided for you to use

Single-Node Simulation

What we modified in config runtime.yaml earlier:

Launching Simulation Instances

\$ firesim launchrunfarm

Already running in a tmux session; re-attach with tmux attach -t sim

```
FireSim Manager. Docs: https://docs.fires.im
Running: launchrunfarm

Waiting for instance boots: 0 f1.16xlarge
Waiting for instance boots: 1 f1.2xlarge
i-0c5c6894d0ac788af booted!
Waiting for instance boots: 0 f1.4xlarge
Waiting for instance boots: 0 m4.16xlarge
Waiting for instance boots: 0 z1d.12xlarge
Waiting for instance boots: 0 z1d.3xlarge
Waiting for instance boots: 0 z1d.3xlarge
Waiting for instance boots: 0 z1d.6xlarge
The full log of this run is:
/home/centos/chipyard/sims/firesim/deploy/logs/2022-06-17--23-52-57-launchrunfarm-R50MKTLJ42036MZZ.log
```


Launching Simulation Instances

Deploying Simulation Infrastructure

\$ firesim infrasetup

Already running!

This deploys various software prerequisites:

- Builds host-side simulation drivers for the specific build triplet
- Builds the switch model executable (if enabled)
- Collects information about simulation instances and transfers files
- Programs the FPGAs with the desired AGFIs

Deploying Simulation Infrastructure

\$ firesim infrasetup

Already running!

```
FireSim Manager. Docs: https://docs.fires.im
Running: infrasetup
Building FPGA software driver for FireSim-WithDefaultFireSimBridges WithFireSimHighPerfConfigTweaks chipyard.RocketConfig-F90MHz BaseF1Config
[192.168.3.52] Executing task 'instance liveness'
[192.168.3.52] Checking if host instance is up...
[192.168.3.52] Executing task 'infrasetup node wrapper'
[192.168.3.52] Copying FPGA simulation infrastructure for slot: 0.
[192.168.3.52] Installing AWS FPGA SDK on remote nodes. Upstream hash: 1.12.0-72-gfed0aa6
[192.168.3.52] Unloading XRT-related Kernel Modules.
[192.168.3.52] Copying AWS FPGA XDMA driver to remote node.
[192.168.3.52] Unloading XDMA Driver Kernel Module.
[192.168.3.52] Loading XDMA Driver Kernel Module.
[192.168.3.52] Setting up remote node for qcow2 disk images.
[192.168.3.52] Loading NBD Kernel Module.
[192.168.3.52] Unloading NBD Kernel Module.
[192.168.3.52] Disconnecting all NBDs.
[192.168.3.52] Clearing FPGA Slot 0.
[192.168.3.52] Checking for Cleared FPGA Slot 0.
[192.168.3.52] Flashing FPGA Slot: 0 with agfi: agfi-0e27eb94672e2f5a9.
[192.168.3.52] Checking for Flashed FPGA Slot: 0 with agfi: agfi-0e27eb94672e2f5a9.
[192.168.3.52] Unloading XDMA Driver Kernel Module.
[192.168.3.52] Loading XDMA Driver Kernel Module.
[192.168.3.52] Starting Vivado hw server.
[192.168.3.52] Starting Vivado virtual JTAG.
The full log of this run is:
/home/centos/chipyard/sims/firesim/deploy/logs/2022-06-18--00-13-05-infrasetup-SJJBIKPWY020THF4.log
```


Deploying Simulation Infrastructure

Running the Simulation

\$ firesim runworkload

```
FireSim Manager. Docs: http://docs.fires.im
Running: runworkload

Creating the directory: /home/centos/chipyard/sims/firesim/deploy/results-workload/2022-06-18--00-16-00-linux-uniform/
[192.168.3.52] Executing task 'instance_liveness'
[192.168.3.52] Checking if host instance is up...
[192.168.3.52] Executing task 'boot_switch_wrapper'
[192.168.3.52] Executing task 'boot_simulation_wrapper'
[192.168.3.52] Starting FPGA simulation for slot: 0.
[192.168.3.52] Executing task 'monitor_jobs_wrapper'
```


Running the Simulation

Monitoring the Simulation

You should see a live status report that refreshes periodically:

```
FireSim Simulation Status @ 2022-06-18 00:17:10.188191
This workload's output is located in:
/home/centos/chipyard/sims/firesim/deploy/results-workload/2022-06-18--00-16-00-
linux-uniform/
This run's log is located in:
/home/centos/chipyard/sims/firesim/deploy/logs/2022-06-18--00-16-00-runworkload-
NEZCRUKBA2M44B9M.log
This status will update every 10s.
Instances
Hostname/IP: 192.168.3.52 | Terminated: False
Simulated Switches
Simulated Nodes/Jobs
Hostname/IP: 192.168.3.52 | Job: linux-uniform0 | Sim running: True
Summary
1/1 instances are still running.
1/1 simulations are still running.
```


Interacting with the Simulation

Look for the run instance's IP address in the status:

```
FireSim Simulation Status @ 2022-06-18 00:17:10.188191
This workload's output is located in:
/home/centos/chipyard/sims/firesim/deploy/results-workload/2022-06-18--00-16-00-
linux-uniform/
This run's log is located in:
/home/centos/chipyard/sims/firesim/deploy/logs/2022-06-18--00-16-00-runworkload-
NEZCRUKBA2M44B9M. log
This status will update every 10s.
Instances
Hostname/IP: 192.168.3.52 | Terminated: False
Simulated Switches
Simulated Nodes/Jobs
Hostname/IP: 192.168.3.52 | Job: linux-uniform0 | Sim running: True
Summary
1/1 instances are still running.
1/1 simulations are still running.
```


Interacting with the Simulation

• On the *manager* instance, ssh into the run farm instance:

```
$ ssh 192.168.3.52
```

• Then attach to the console of the simulated node:

```
$ screen -r fsim0
```


Logging Into the Simulated System

- Once Linux boots, the login prompt should appear over the console
- Log in as root with password firesim (password does not echo)

```
[ 0.085714] EXT4-fs (iceblk): re-mounted. Opts: (null)
Starting syslogd: OK
Starting klogd: OK
Starting mdev... done.
Starting dropbear sshd: OK
Welcome to Buildroot
buildroot login: root
Password:
#
```


Logging Into the Simulated System

Feel free to experiment with shell commands

```
# uname -a
# cat /proc/cpuinfo
# free -m
# vim
```

When done, shut down the system

```
# poweroff -f
```

This will also end the simulation

Finally, exit the ssh session with Ctrl-d to return to the manager instance

Custom FireSim Workloads

 Workload: Series of jobs (software configurations) assigned to run on individual simulations

Two types of workloads:

Uniform: Homogenous job run by all nodes in a simulated cluster

Non-uniform: Each node is assigned a different job

- Client/server configurations
- Benchmark suites (SPEC17)

Workload Definitions

linux-uniform: Default workload to boot an interactive buildroot-based GNU/Linux distro on every node

```
"benchmark_name" : "linux-uniform",
   "common_bootbinary" : "br-base-bin",
   "common_rootfs" : "br-base.img",
   "common_outputs" : ["/etc/os-release"],
   "common_simulation_outputs" : ["uartlog", "memory_stats.csv"]
}
```

\$FDIR/deploy/workloads/linux-uniform/br-base{-bin,.img} are symlinks to the FireMarshal-generated images

SPEC CPU2017

- 10 jobs one per benchmark in the SPECrate Integer suite
- Build and install the workloads in chipyard/software/spec2017 using FireMarshal
- Set up config runtime.yaml
 - f1 2xlarges: 10
 - topology: no net config
 - no net num nodes: 10
 - workload_name: spec17intrate.json
- Select the hardware config to benchmark, then run firesim launchrunfarm/infrasetup/ runworkload

```
"common bootbinary" : "bbl-vmlinux",
"benchmark name" : "spec17-intrate",
"deliver dir" : "spec17-intrate",
"common args" : ["--copies 4"],
"common files" : ["intrate.sh"],
"common outputs" : ["/output"],
"common simulation outputs" : ["uartlog"],
"workloads" : [
    "name": "500.perlbench r",
   "files": ["500.perlbench r"],
    "command": "cd /spec17-intrate && ./intrate.sh 500.perlbench r",
    "simulation outputs": [],
    "outputs": []
    "name": "502.gcc r",
    "files": ["502.gcc r"],
    "command": "cd /spec17-intrate && ./intrate.sh 502.gcc r",
    "simulation outputs": [],
    "outputs": []
```


John the Ripper

- Open-source password checking software
- Our customized version adds support for two more hash formats:
 - Raw-SHA3-256: pure software implementation using generic Keccak code
 - Raw-SHA3-256-rocc: RoCC accelerator offload
- https://github.com/ucb-bar/JohnTheRipper/tree/riscv
 - src/sha3_256_rocc_fmt_plug.c
 - The crypt all() function performs the actual hashing
- Minor Linux kernel patches to facilitate accelerator context switching

Changing Workloads

Generate the FireSim workload definition for "sha3-linux-jtr-test":

```
$ cd ~/chipyard-afternoon/generators/sha3/software
$ marshal install marshal-configs/sha3-linux-jtr-test.yaml
```

• Update \$FDIR/deploy/config runtime.yaml accordingly:

```
default_hw_config: firesim_rocket_singlecore_sha3_no_nic_12_11c4mb_ddr3
workload_name: sha3-linux-jtr-test.json
```

Then start another simulation:

```
$ firesim infrasetup && firesim runworkload
```


Basic Benchmarking

- The workload first runs John the Ripper's low-level self-tests and benchmarks to measure raw hash performance
 - Passwords constitute a less optimal input for the accelerator
 - Many unrelated messages much shorter than the block size (1088 bits)
- "Crypts per second" (C/s) metric
 - *Real*: elapsed real time
 - Virtual: total CPU time

```
Benchmarking: Raw-SHA3-256 [SHA3 256 32/64]... DONE Raw: 164928 c/s real, 164928 c/s virtual

Benchmarking: Raw-SHA3-256-rocc [SHA3 256 32/64]... DONE Raw: 10171K c/s real, 10222K c/s virtual
```


Password Solving

- In the second half of the workload, the SHA-3 accelerator is used to attack sample hashes from the default wordlist
- john is given input files of one hash per line, unsalted for simplicity:

```
hash_0:be87f99a67e48ec4ec9f05b565f6ca531e24b9c71a62cfd3a58f54ebc60115ea hash_1:f706280cdf972ed4af636d540e7d2ea2ff3e9f91e63bc389b2aa0fa288c486a9 hash_2:2cd81e6887b1618af765e2bc127f68b563e6a1b4abd397331b759f878eb8515e hash_3:9cdc6b9ff3d0d0a90cb8670fb972debc08947697c6b63903458abbaaa0fe93c9
```

• The companion "sha3-linux-jtr-crack" workload includes a more challenging scenario that tests the incremental (brute-force) mode

Capturing Results

 Once the workload terminates automatically, the results are copied to the manager instance:

```
FireSim Simulation Exited Successfully. See results in:
/home/centos/chipyard/sims/firesim/deploy/results-workload/2022-06-17--00-38-00-sha3-linux-jtr-test/
```

- The exact directory path will contain a different timestamp
- Console output recorded in sha3-linux-jtr-test0/uartlog
- HW configuration in sha3-linux-jtr-test0/HW_CFG_SUMMARY

