
Instrumenting and Debugging
FireSim-Simulated Designs

ISCA 2021 Tutorial
Alon Amid

https://fires.im
@firesimproject

Agenda

• FPGA-Accelerated Deep-Simulation Debugging
• Debugging Using Integrated Logic Analyzers
• Trace-based Debugging
• Out-of-band Performance Counters
• Synthesizable Assertions/Prints
• Dromajo and FireSim

• Debugging Co-Simulation
• FireSim Debugging Using Software Simulation

2

3

“Everything looks OK in SW simulation, but there is still a bug somewhere”

“My bug only appears after hours of running Linux on my simulated HW”

When SW RTL Simulation is Not Enough…

FPGA-Based Debugging Features

• High simulation speed in FPGA-based simulation enables advanced
debugging and profiling tools.

• Reach “deep” in simulation time, and obtain large levels of coverage and
data

• Examples:
• ILAs
• TracerV
• Synthesizable assertions, prints

4

Simulated
Time

SW
Simulation

FPGA-based
Simulation

Debugging Using Integrated Logic Analyzers

Integrated Logic Analyzers (ILAs)
• Common debugging feature provided by FPGA vendors
• Continuous recording of a sampling window

• Up to 1024 cycles by default.
• Stores recorded samples in BRAM.

• Realtime trigger-based sampled output of probed signals
• Multiple probes ports can be combined to a single trigger
• Trigger can be in any location within the sampling window

• On the AWS F1-Instances, ILA interfaced through a
debug-bridge and server

5
From: aws-fpga cl_hello_world example

Debugging Using Integrated Logic Analyzers

AutoILA – Automation of ILA integration with FireSim
• Annotate requested signals and bundles in the Chisel source code
• Automatic configuration and generation of the ILA IP in the FPGA

toolchain
• Automatic expansion and wiring of annotated signals to the top level

of a design using a FIRRTL transform.
• Remote waveform and trigger

setup from the manager
instance

6

BOOM Example
• Debugging an OoO processor is hard

• Throughout this talk, we’ll have examples of FPGA debugging used in BOOM.

• Example from boom/src/main/scala/lsu/dcache.scala
• Debugging a non-blocking data cache hanging after Linux boots

7

class BoomNonBlockingDCacheModule(outer: BoomNonBlockingDCache) extends LazyModuleImp(outer)
with HasL1HellaCacheParameters

{
implicit val edge = outer.node.edges.out(0)
val (tl_out, _) = outer.node.out(0)
val io = IO(new BoomDCacheBundle)

FpgaDebug(tl_out)
FpgaDebug(io.req)
FpgaDebug(io.resp)
FpgaDebug(io.s1_kill)
FpgaDebug(io.nack)
…

}

Debugging using Integrated Logic Analyzers

8

Pros:
• No emulated parts – what you

see is what’s running on the
FPGA

• FPGA simulation speed - O(MHz)
compared to O(KHz) in software
simulation

• Real-time trigger-based

Cons:
• Requires a full build to modify

visible signals/triggers (takes
several hours)

• Limited sampling window size
• Consumes FPGA resources

TraceRV

9

• Out-of-band full instruction execution trace
• Bridge connected to target trace ports
• By default, large amount of info wired out of

Rocket/BOOM, per-hart, per-cycle:
• Instruction Address
• Instruction
• Privilege Level
• Exception/Interrupt Status, Cause

• TraceRV can rapidly generate several TB of
data.

TracerV

• Out-of-Band: profiling does not perturb
execution

• Useful for kernel and hypervisor level cycle-
sensitive profiling

• Examples:
• Co-Optimization of NIC and Network Driver
• Keystone Secure Enclave Project
• High-performance hardware-specific code

(supercomputing?)
• Requires large-scale analytics for insightful

profiling and optimization.

10

Trigger Mechanisms

• Full trace files can be very large (100s GB – TB)
• We are usually interested only in a specific region of execution
• TraceRV can be enabled based on in-band and out-of-band triggers

• Program counter
• Unique instruction
• Cycle count

• Can use the same trigger for some other
simulation outputs

• Performance counters

11

[tracing]
enable=no
#0 = no trigger
#1 = cycle count trigger
#2 = program counter trigger
#3 = instruction trigger
selector=1
startcycle=0
endcycle=-1

config_runtime.ini

Integration with Flame Graphs

• Flame Graph – Open-source profiling visualization tool
• Direct integration with TraceRV traces

• Automated stack unwinding (kernel space)
• Automated Flame-graph generation

12

TraceRV

13

Pros:
• Out-of-Band (no impact

on workload execution)
• SW-centric method
• Large amounts of data

Cons:
• Slower simulation

performance (40 MHz)
• No HW visibility
• Large amounts of data

AutoCounter

• Automated out-of-band counter insertion
• Based on ad-hoc annotations and existing cover-points

• No invasive RTL change

• Runtime-configurate read rate

14

AutoCounter Example
• Example ad-hoc performance counters in the L2 cache

15

[autocounter]
readrate=1000000

class SinkA(params: InclusiveCacheParameters) extends Module
{
val io = new Bundle {
val req = Decoupled(new FullRequest(params))
val a = Decoupled(new TLBundleA(params.inner.bundle)).flip
val pb_pop = Decoupled(new PutBufferPop(params)).flip
val pb_beat = new PutBufferAEntry(params)

}
PerfCounter(io.a.fire(), "l2_requests", "Number of requests to the first bank of the L2");

• Simle runtime read-rate configuration (config_runtime.ini)
• Trade-off visibility/detail and performance

AutoCounter Example
• Example AutoCounter output file:

16

Cycle 2457999999
============================
PerfCounter l2_misses_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sourceA: 16872407
PerfCounter l2_requests_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sinkA: 45143832

Cycle 2458999999
============================
PerfCounter l2_misses_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sourceA: 16873445
PerfCounter l2_requests_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sinkA: 45182776

Cycle 2459999999
============================
PerfCounter l2_misses_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sourceA: 16873752
PerfCounter l2_requests_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sinkA: 45183706

Cycle 2460999999
============================
PerfCounter l2_misses_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sourceA: 16874798
PerfCounter l2_requests_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sinkA: 45222694

Cycle 2461999999
============================
PerfCounter l2_misses_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sourceA: 16874798
PerfCounter l2_requests_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sinkA: 45222694

Automated Performance Counters

17

Pros:
• Macro view of execution behavior
• Trigger integration
• Pre-configured cover points, no

RTL interference
• SW-controlled granularity

(tradeoff simulation for read rate)

Cons:
• New counters require new FPGA

images
• Simulation performance degradation

depending on read rate and number
of counters

Synthesizable Assertions

• Assertions – rapid error checking embedded in HW source code.
• Commonly used in SW Simulation
• Halts the simulation upon a triggered assertion. Represented as a “stop”

statement in FIRRTL
• By default, emitted as non-synthesizable SV functions ($fatal)

18

From: Trillion-Cycle Bug Finding Using FPGA-Accelerated Simulation Donggyu Kim, Christopher Celio,
Sagar Karandikar, David Biancolin, Jonathan Bachrach, Krste Asanović. ADEPT Winter Retreat 2018

From: BROOM: An open-source Out-of-Order processor with resilient low-voltage operation in 28nm CMOS,
Christopher Celio, Pi-Feng Chiu, Krste Asanovic, David Patterson and Borivoje Nikolic. HotChip 30, 2018

Synthesizable Assertions

• Synthesizable Assertions on FPGA
• Transform FIRRTL stop statements into synthesizable logic
• Insert combinational logic and signals for the stop condition arguments
• Insert encodings for each assertion (for matching error statements in SW)
• Wire the assertion logic output to the Top-Level
• Generate timing tokens for cycle-exact assertions
• Assertion checker records the cycle and halts simulation when assertion is

triggered

19

BOOM Example

• Example from boom/src/main/scala/exu/rob.scala
• Assert is the ROB is behaving un-expectedly

• Overwriting a valid entry

20

assert (rob_val(rob_tail) === false.B, "[rob] overwriting a valid entry.")
assert ((io.enq_uops(w).rob_idx >> log2Ceil(coreWidth)) === rob_tail)
assert (!(io.wb_resps(i).valid && MatchBank(GetBankIdx(rob_idx)) &&
!rob_val(GetRowIdx(rob_idx))), "[rob] writeback (" + i + ") occurred to an
invalid ROB entry.")

BOOM Example
• How it looks in the UART output (while Linux is booting):

21

[0.008000] VFS: Mounted root (ext2 filesystem) on device 253:0.
[0.008000] devtmpfs: mounted
[0.008000] Freeing unused kernel memory: 148K
[0.008000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device
Starting syslogd: OK
Starting klogd: OK
Starting mdev...
mdev: /sys/dev: No such file or directory
[id: 1840, module: Rob, path: FireBoom.boom_tile_1.core.rob]
Assertion failed: [rob] writeback (0) occurred to an invalid ROB entry.

at rob.scala:504 assert (!(io.wb_resps(i).valid && MatchBank(GetBankIdx(rob_idx)) &&
at cycle: 1112250469

*** FAILED *** (code = 1841) after 1112250485 cycles
time elapsed: 307.8 s, simulation speed = 3.61 MHz
FPGA-Cycles-to-Model-Cycles Ratio (FMR): 2.77
Beats available: 2165
Runs 1112250485 cycles
[FAIL] FireBoom Test
SEED: 1569631756
at cycle 4294967295

It would take ~62 hours to hit
this assertion is SW RTL

simulation (at 5 KHz sim rate),
vs. just a few minutes in FireSim

Synthesizable Printfs

• Research feature presented in DESSERT [1] (together with assertions)
• Enable “software-style” debugging using printf statements
• Convert Chisel printf statements to synthesizable blocks

• Appropriate parsing in simulation bridge
• Including signal values

• Impact on simulation performance depends
on the frequency of printfs.

• Output includes the exact cycle of the
printf event

• Helps measure cycles counts between events

22

https://www.deviantart.com/stym0r/art/Bart-Simpson-Programmer-134362686

[1] Kim, D., Celio, C., Karandikar, S., Biancolin, D., Bachrach, J. and Asanovic, K., DESSERT: Debugging RTL Effectively with State Snapshotting for Error Replays across
Trillions of cycles. The International Conference on Field-Programmable Logic and Applications (FPL), 2018

https://www.deviantart.com/stym0r/art/Bart-Simpson-Programmer-134362686

BOOM Example

• Example from boom/src/main/scala/lsu/lsu.scala
• Print a trace of all loads and stores, for verifying memory consistency.

23

if (MEMTRACE_PRINTF) {
when (commit_store || commit_load) {

val uop = Mux(commit_store, stq(idx).bits.uop, ldq(idx).bits.uop)
val addr = Mux(commit_store, stq(idx).bits.addr.bits, ldq(idx).bits.addr.bits)
val stdata = Mux(commit_store, stq(idx).bits.data.bits, 0.U)
val wbdata = Mux(commit_store, stq(idx).bits.debug_wb_data, ldq(idx).bits.debug_wb_data)
printf(midas.targetutils.SynthesizePrintf("MT %x %x %x %x %x %x %x\n",
io.core.tsc_reg, uop.uopc, uop.mem_cmd, uop.mem_size, addr, stdata, wbdata))

}
}

Synthesizable Printfs/Assertions

24

Pros:
• FPGA simulation speed
• Real-time trigger-based
• Consumes small amount of FPGA

resources (compared to ILA)
• Key signals have pre-written

assertions in re-usable
components/libraries

Cons:
• Low visibility: No waveform/state
• Assertions are best added while

writing source RTL rather than
during
“investigative” debugging

Dromajo Co-Simulation

• Dromajo – RV64GC emulator
designed for RTL co-simulation

• Can be used to debug BOOM in
FireSim through functional co-
simulation and comparison

• Or any other design with a functional
implementation in Dromajo

• Find functional bugs billions of
cycles into simulations

• Find divergence against functional
golden model

• Dump waveforms for affected signals

25

[error] EMU PC ffffffe001055d84, DUT PC ffffffe001055d84
[error] EMU INSN 14102973, DUT INSN 14102973
[error] EMU WDATA 000220d6, DUT WDATA 000220d4
[error] EMU MSTATUS a000000a0, DUT MSTATUS 00000000
[error] DUT pending exception -1 pending interrupt -1
[ERROR] Dromajo: Errored during simulation tick with 8191

*** FAILED *** (code = 8191) after 2,356,509,311 cycles
time elapsed: 2740.8 s, simulation speed = 859.79 KHz
FPGA-Cycles-to-Model-Cycles Ratio (FMR): 8.14
Runs 2356509311 cycles
FAIL] FireSim Test

2 billion cycle divergence where receiving an
interrupt during mis-speculation affects

architectural state (EPC)

Debugging Co-Simulation

26

Debugging Using Software RTL Simulation

27

Modifying internal
simulated target hardware,
no new external endpoints

Target-Level SW
Simulation

What
Am I

doing?

Simulator-Level SW
Simulation

Adding/Modifying new
interfaces and endpoints,

modifying simulation models

Midas-Level SW
Simulation

FPGA-Level SW
Simulation

My FireSim Simulation Is Not Working

Debugging Using Software RTL Simulation

28

Target-Level
Simulation

• Software Simulation
• Target Design

Untransformed
• No Host-FPGA

interfaces

MIDAS-Level
Simulation

• Software Simulation
• Target Design

Transformed by
Golden Gate

• Host-FPGA
interfaces/shell
emulated using
abstract models

FPGA-Level
Simulation

• Software Simulation
• Target Design

Transformed by
Golden Gate

• Host-FPGA
interfaces/shell
simulated by the
FPGA tools

30

RTL Design
Physical
DRAM

100ns
latency

<- Resp Queue

Req Queue ->

DRAM
Model

100
cycle

latency

Mem
Channel

“FAME-1” Transformed RTL Design

Target-Level
SW Simulation

FPGA Fabric

Debugging Using Software RTL Simulation

31

RTL Design
Physical
DRAM

100ns
latency

<- Resp Queue

Req Queue ->

DRAM
Model

100
cycle

latency

Mem
Channel

“FAME-1” Transformed RTL Design

MIDAS-Level
SW Simulation

FPGA Fabric

Abstract
ModelTarget-Level

SW Simulation

Debugging Using Software RTL Simulation

32

RTL Design
Physical
DRAM

100ns
latency

<- Resp Queue

Req Queue ->

DRAM
Model

100
cycle

latency

Mem
Channel

“FAME-1” Transformed RTL Design

MIDAS-Level
SW Simulation

FPGA Fabric

Abstract
ModelTarget-Level

SW Simulation

FPGA-Level
SW Simulation

Debugging Using Software RTL Simulation

Debugging Using Software RTL Simulation

33

Level Waves VCS Verilator XSIM

Target Off ~5 kHz ~5 kHz N/A

Target On ~1 kHz ~5 kHz N/A

MIDAS Off ~4 kHz ~2 kHz N/A

MIDAS On ~3 kHz ~1 kHz N/A

FPGA On ~2 Hz N/A ~0.5 Hz

The FireSim Vision: Speed and Visibility

• High-performance simulation
• Full application workloads
• Tunable visibility & resolution
• Unique data-based insights

35

Interactive Example

36

Hands-on Synthesizable Printf Example

• We would like to observe when the SHA3 algorithm completes a
round, and some details about the round. This is represented by the
following code segment (https://github.com/ucb-
bar/sha3/blob/master/src/main/scala/dpath.scala#L103)

37

when(io.absorb){
state := state
when(io.aindex < UInt(round_size_words)){

state((io.aindex%UInt(5))*UInt(5)+(io.aindex/UInt(5))) :=
state((io.aindex%UInt(5))*UInt(5)+(io.aindex/UInt(5))) ^ io.message_in

}
}

https://github.com/ucb-bar/sha3/blob/master/src/main/scala/dpath.scala#L103

Hands-on Synthesizable Printf Example

• We would like to observe when the SHA3 algorithm completes a
round, and some details about the round. This is represented by the
following code segment (https://github.com/ucb-
bar/sha3/blob/master/src/main/scala/dpath.scala#L103)

38

when(io.absorb){
state := state
if(p(Sha3PrintfEnable)){

printf(midas.targetutils.SynthesizePrintf("SHA3 finished an iteration with index %d and
message %x\n", io.aindex, io.message_in))

}
when(io.aindex < UInt(round_size_words)){

state((io.aindex%UInt(5))*UInt(5)+(io.aindex/UInt(5))) :=
state((io.aindex%UInt(5))*UInt(5)+(io.aindex/UInt(5))) ^ io.message_in

}
}

https://github.com/ucb-bar/sha3/blob/master/src/main/scala/dpath.scala#L103

Hands-on Synthesizable Printf Example

• We use the following build recipe for this FPGA image
(in deploy/config_build_recipes.ini) is:

39

[firesim-singlecore-sha3-no-nic-l2-llc4mb-ddr3-print]
DESIGN=FireSim
TARGET_CONFIG=
DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_WithFireSimTestChipConfigTweaks_chipyard.Sha3RocketConfig
PLATFORM_CONFIG=WithPrintfSynthesis_F120MHz_BaseF1Config
instancetype= z1d.2xlarge
deploytriplet=None

Hands-on Synthesizable Printf Example
Update our workload to copy the output printf file:
• vim workloads/sha3-bare-rocc.json
• Add the synthesized-prints.out to our simulation output

{
"benchmark_name": "sha3-bare-rocc",
"common_simulation_outputs": [

"uartlog", "synthesized-prints.out"
],
"common_bootbinary": "../../../../../generators/sha3/software/tests/bare/sha3-rocc.riscv",
"common_rootfs": "../../../../../software/firemarshal/boards/default/installers/firesim/dummy.rootfs"}

40

Hands-on Synthesizable Printf Example
f1_16xlarges=0
m4_16xlarges=0
f1_4xlarges=0
f1_2xlarges=1

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=no_net_config
no_net_num_nodes=1
linklatency=6405
switchinglatency=10
netbandwidth=200
profileinterval=-1

defaulthwconfig=firesim-singlecore-
sha3-no-nic-l2-llc4mb-ddr3-print

[workload]
workloadname=sha3-bare-rocc.json

• Setup the
firesim/deploy/config_runtime.ini file:

• Select the AGFI that was synthesized with the
printf

• Select the bare-metal SHA3 test workload
• Boot the simulation by running the

following sequence of commands:
• firesim infrasetup

• This should take about 10 minutes
• firesim runworkload

• This should take about 2 minutes

41

$ firesim infrasetup

$ firesim runworkload

Hands-on Synthesizable Printf Example
Output file in deploy/results-workload/<timestamp>-sha3-bare-rocc/sha3-bare-rocc0/synthesized-prints.out

42

CYCLE: 36086158 SHA3 finished an iteration with index 0 and message 0000000000000000
CYCLE: 36086159 SHA3 finished an iteration with index 1 and message 0000000000000000
CYCLE: 36086160 SHA3 finished an iteration with index 2 and message 0000000000000000
CYCLE: 36086161 SHA3 finished an iteration with index 3 and message 0000000000000000
CYCLE: 36086162 SHA3 finished an iteration with index 4 and message 0000000000000000
CYCLE: 36086163 SHA3 finished an iteration with index 5 and message 0000000000000000
CYCLE: 36086164 SHA3 finished an iteration with index 6 and message 0000000000000000
CYCLE: 36086165 SHA3 finished an iteration with index 7 and message 0000000000000000
CYCLE: 36086166 SHA3 finished an iteration with index 8 and message 0000000000000000
CYCLE: 36086167 SHA3 finished an iteration with index 9 and message 0000000000000000
CYCLE: 36086168 SHA3 finished an iteration with index 10 and message 0000000000000000
CYCLE: 36086169 SHA3 finished an iteration with index 11 and message 0000000000000000
CYCLE: 36086170 SHA3 finished an iteration with index 12 and message 0000000000000000
CYCLE: 36086171 SHA3 finished an iteration with index 13 and message 0000000000000000
CYCLE: 36086172 SHA3 finished an iteration with index 14 and message 0000000000000000
CYCLE: 36086173 SHA3 finished an iteration with index 15 and message 0000000000000000
CYCLE: 36086174 SHA3 finished an iteration with index 16 and message 0000000000000000
CYCLE: 36086175 SHA3 finished an iteration with index 17 and message 0000000000000000
CYCLE: 36086203 SHA3 finished an iteration with index 0 and message 0000000000000000
CYCLE: 36086204 SHA3 finished an iteration with index 1 and message 0006000000000000
CYCLE: 36086205 SHA3 finished an iteration with index 2 and message 0000000000000000
CYCLE: 36086206 SHA3 finished an iteration with index 3 and message 0000000000000000
CYCLE: 36086207 SHA3 finished an iteration with index 4 and message 0000000000000000
…

Hands-on Synthesizable Printf Example
Don’t forget to terminate your runfarms (otherwise, we are going to
pay for a lot of FPGA time)

43

$ firesim terminaterunfarm

Type yes at the prompt to confirm

Summary

• Debugging Using Software Simulation (docs)
• Target-Level
• MIDAS-Level
• FPGA-Level

• Debugging Using Integrated Logic Analyzers (docs)
• Advanced Debugging and Profiling Features

• TracerV (docs)
• Assertion and Print Synthesis (docs)
• AutoCounter (docs)

• FireSim Debugging and Profiling Future Vision

44

https://docs.fires.im/en/latest/Advanced-Usage/Debugging-in-Software/index.html
https://docs.fires.im/en/latest/Advanced-Usage/Debugging-and-Profiling-on-FPGA/Debugging-Hardware-Using-ILA.html
https://docs.fires.im/en/latest/Advanced-Usage/Debugging-and-Profiling-on-FPGA/TracerV.html
https://docs.fires.im/en/latest/Advanced-Usage/Debugging-and-Profiling-on-FPGA/Printf-Synthesis.html
https://docs.fires.im/en/latest/Advanced-Usage/Debugging-and-Profiling-on-FPGA/AutoCounter.html
https://docs.fires.im/

	Instrumenting and Debugging FireSim-Simulated Designs
	Agenda
	When SW RTL Simulation is Not Enough…
	FPGA-Based Debugging Features
	Debugging Using Integrated Logic Analyzers
	Debugging Using Integrated Logic Analyzers
	BOOM Example
	Debugging using Integrated Logic Analyzers
	TraceRV
	TracerV
	Trigger Mechanisms
	Integration with Flame Graphs
	TraceRV
	AutoCounter
	AutoCounter Example
	AutoCounter Example
	Automated Performance Counters
	Synthesizable Assertions
	Synthesizable Assertions
	BOOM Example
	BOOM Example
	Synthesizable Printfs
	BOOM Example
	Synthesizable Printfs/Assertions
	Dromajo Co-Simulation
	Debugging Co-Simulation
	Debugging Using Software RTL Simulation
	Debugging Using Software RTL Simulation
	Debugging Using Software RTL Simulation
	Debugging Using Software RTL Simulation
	Debugging Using Software RTL Simulation
	Debugging Using Software RTL Simulation
	The FireSim Vision: Speed and Visibility
	Interactive Example
	Hands-on Synthesizable Printf Example
	Hands-on Synthesizable Printf Example
	Hands-on Synthesizable Printf Example
	Hands-on Synthesizable Printf Example
	Hands-on Synthesizable Printf Example
	Hands-on Synthesizable Printf Example
	Hands-on Synthesizable Printf Example
	Summary

