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Agenda

• FPGA-Accelerated Deep-Simulation Debugging 
• Debugging Using Integrated Logic Analyzers
• Trace-based Debugging
• Out-of-band Performance Counters
• Synthesizable Assertions/Prints
• Dromajo and FireSim

• Debugging Co-Simulation
• FireSim Debugging Using Software Simulation
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“Everything looks OK in SW simulation, but there is still a bug somewhere”

“My bug only appears after hours of running Linux on my simulated HW”

When SW RTL Simulation is Not Enough…



FPGA-Based Debugging Features

• High simulation speed in FPGA-based simulation enables advanced 
debugging and profiling tools.

• Reach “deep” in simulation time, and obtain large levels of coverage and 
data

• Examples:
• ILAs
• TracerV
• Synthesizable assertions, prints
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Debugging Using Integrated Logic Analyzers

Integrated Logic Analyzers (ILAs)
• Common debugging feature provided by FPGA vendors
• Continuous recording of a sampling window

• Up to 1024 cycles by default.
• Stores recorded samples in BRAM. 

• Realtime trigger-based sampled output of probed signals
• Multiple probes ports can be combined to a single trigger
• Trigger can be in any location within the sampling window 

• On the AWS F1-Instances, ILA interfaced through a 
debug-bridge and server
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From: aws-fpga cl_hello_world example



Debugging Using Integrated Logic Analyzers

AutoILA – Automation of ILA integration with FireSim
• Annotate requested signals and bundles in the Chisel source code
• Automatic configuration and generation of the ILA IP in the FPGA 

toolchain
• Automatic expansion and wiring of annotated signals to the top level 

of a design using a FIRRTL transform.
• Remote waveform and trigger 

setup from the manager 
instance

6



BOOM Example
• Debugging an OoO processor is hard

• Throughout this talk, we’ll have examples of FPGA debugging used in BOOM.

• Example from boom/src/main/scala/lsu/dcache.scala
• Debugging a non-blocking data cache hanging after Linux boots
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class BoomNonBlockingDCacheModule(outer: BoomNonBlockingDCache) extends LazyModuleImp(outer)
with HasL1HellaCacheParameters

{
implicit val edge = outer.node.edges.out(0)
val (tl_out, _) = outer.node.out(0)
val io = IO(new BoomDCacheBundle)

FpgaDebug(tl_out)
FpgaDebug(io.req)
FpgaDebug(io.resp)
FpgaDebug(io.s1_kill)
FpgaDebug(io.nack)
…

}



Debugging using Integrated Logic Analyzers
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Pros:
• No emulated parts – what you 

see is what’s running on the 
FPGA

• FPGA simulation speed - O(MHz) 
compared to O(KHz) in software 
simulation

• Real-time trigger-based

Cons:
• Requires a full build to modify 

visible signals/triggers (takes 
several hours)

• Limited sampling window size
• Consumes FPGA resources



TraceRV
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• Out-of-band full instruction execution trace
• Bridge connected to target trace ports
• By default, large amount of info wired out of 

Rocket/BOOM, per-hart, per-cycle:
• Instruction Address
• Instruction
• Privilege Level
• Exception/Interrupt Status, Cause 

• TraceRV can rapidly generate several TB of 
data.



TracerV

• Out-of-Band: profiling does not perturb 
execution

• Useful for kernel and hypervisor level cycle-
sensitive profiling 

• Examples:
• Co-Optimization of NIC and Network Driver
• Keystone Secure Enclave Project
• High-performance hardware-specific code 

(supercomputing?)
• Requires large-scale analytics for insightful 

profiling and optimization.
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Trigger Mechanisms

• Full trace files can be very large (100s GB – TB)
• We are usually interested only in a specific region of execution
• TraceRV can be enabled based on in-band and out-of-band triggers

• Program counter
• Unique instruction
• Cycle count

• Can use the same trigger for some other
simulation outputs

• Performance counters
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[tracing]
enable=no
#0 = no trigger
#1 = cycle count trigger
#2 = program counter trigger
#3 = instruction trigger
selector=1
startcycle=0
endcycle=-1

config_runtime.ini



Integration with Flame Graphs

• Flame Graph – Open-source profiling visualization tool
• Direct integration with TraceRV traces

• Automated stack unwinding (kernel space)
• Automated Flame-graph generation
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TraceRV
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Pros:
• Out-of-Band (no impact 

on workload execution)
• SW-centric method
• Large amounts of data

Cons:
• Slower simulation 

performance (40 MHz)
• No HW visibility
• Large amounts of data 



AutoCounter

• Automated out-of-band counter insertion
• Based on ad-hoc annotations and existing cover-points

• No invasive RTL change

• Runtime-configurate read rate
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AutoCounter Example
• Example ad-hoc performance counters in the L2 cache
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[autocounter]
readrate=1000000

class SinkA(params: InclusiveCacheParameters) extends Module
{
val io = new Bundle {
val req = Decoupled(new FullRequest(params))
val a = Decoupled(new TLBundleA(params.inner.bundle)).flip
val pb_pop = Decoupled(new PutBufferPop(params)).flip
val pb_beat = new PutBufferAEntry(params)

}
PerfCounter(io.a.fire(), "l2_requests", "Number of requests to the first bank of the L2");

• Simle runtime read-rate configuration (config_runtime.ini)
• Trade-off visibility/detail and performance



AutoCounter Example
• Example AutoCounter output file:
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Cycle 2457999999
============================
PerfCounter l2_misses_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sourceA: 16872407
PerfCounter l2_requests_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sinkA: 45143832

Cycle 2458999999
============================
PerfCounter l2_misses_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sourceA: 16873445
PerfCounter l2_requests_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sinkA: 45182776

Cycle 2459999999
============================
PerfCounter l2_misses_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sourceA: 16873752
PerfCounter l2_requests_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sinkA: 45183706

Cycle 2460999999
============================
PerfCounter l2_misses_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sourceA: 16874798
PerfCounter l2_requests_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sinkA: 45222694

Cycle 2461999999
============================
PerfCounter l2_misses_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sourceA: 16874798
PerfCounter l2_requests_FireSim_TestHarness_subsystem_l2_wrapper_l2_mods_0_sinkA: 45222694



Automated Performance Counters
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Pros:
• Macro view of execution behavior
• Trigger integration
• Pre-configured cover points, no 

RTL interference
• SW-controlled granularity 

(tradeoff simulation for read rate)

Cons:
• New counters require new FPGA 

images
• Simulation performance degradation 

depending on read rate and number 
of counters



Synthesizable Assertions

• Assertions – rapid error checking embedded in HW source code.
• Commonly used in SW Simulation
• Halts the simulation upon a triggered assertion. Represented as a “stop” 

statement in FIRRTL
• By default, emitted as non-synthesizable SV functions ($fatal)
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From: Trillion-Cycle Bug Finding Using FPGA-Accelerated Simulation Donggyu Kim, Christopher Celio, 
Sagar Karandikar, David Biancolin, Jonathan Bachrach, Krste Asanović. ADEPT Winter Retreat 2018

From: BROOM: An open-source Out-of-Order processor with resilient low-voltage operation in 28nm CMOS, 
Christopher Celio, Pi-Feng Chiu, Krste Asanovic, David Patterson and Borivoje Nikolic. HotChip 30, 2018



Synthesizable Assertions

• Synthesizable Assertions on FPGA
• Transform FIRRTL stop statements into synthesizable logic
• Insert combinational logic and signals for the stop condition arguments
• Insert encodings for each assertion (for matching error statements in SW)
• Wire the assertion logic output to the Top-Level
• Generate timing tokens for cycle-exact assertions
• Assertion checker records the cycle and halts simulation when assertion is 

triggered
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BOOM Example

• Example from boom/src/main/scala/exu/rob.scala
• Assert is the ROB is behaving un-expectedly

• Overwriting a valid entry
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assert (rob_val(rob_tail) === false.B, "[rob] overwriting a valid entry.")
assert ((io.enq_uops(w).rob_idx >> log2Ceil(coreWidth)) === rob_tail)
assert (!(io.wb_resps(i).valid && MatchBank(GetBankIdx(rob_idx)) &&           
!rob_val(GetRowIdx(rob_idx))), "[rob] writeback (" + i + ") occurred to an 
invalid ROB entry.")



BOOM Example
• How it looks in the UART output (while Linux is booting):

21

[    0.008000] VFS: Mounted root (ext2 filesystem) on device 253:0.
[    0.008000] devtmpfs: mounted
[    0.008000] Freeing unused kernel memory: 148K
[    0.008000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device
Starting syslogd: OK
Starting klogd: OK
Starting mdev...
mdev: /sys/dev: No such file or directory
[id: 1840, module: Rob, path: FireBoom.boom_tile_1.core.rob]
Assertion failed: [rob] writeback (0) occurred to an invalid ROB entry.

at rob.scala:504 assert (!(io.wb_resps(i).valid && MatchBank(GetBankIdx(rob_idx)) &&
at cycle: 1112250469

*** FAILED *** (code = 1841) after 1112250485 cycles
time elapsed: 307.8 s, simulation speed = 3.61 MHz
FPGA-Cycles-to-Model-Cycles Ratio (FMR): 2.77
Beats available: 2165
Runs 1112250485 cycles
[FAIL] FireBoom Test
SEED: 1569631756
at cycle 4294967295

It would take ~62 hours to hit 
this assertion is SW RTL 

simulation (at 5 KHz sim rate), 
vs. just a few minutes in FireSim



Synthesizable Printfs

• Research feature presented in DESSERT [1] (together with assertions)
• Enable “software-style” debugging using printf statements
• Convert Chisel printf statements to synthesizable blocks 

• Appropriate parsing in simulation bridge
• Including signal values

• Impact on simulation performance depends
on the frequency of printfs.

• Output includes the exact cycle of the 
printf event

• Helps measure cycles counts between events
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https://www.deviantart.com/stym0r/art/Bart-Simpson-Programmer-134362686

[1] Kim, D., Celio, C., Karandikar, S., Biancolin, D., Bachrach, J. and Asanovic, K., DESSERT: Debugging RTL Effectively with State Snapshotting for Error Replays across 
Trillions of cycles. The International Conference on Field-Programmable Logic and Applications (FPL), 2018

https://www.deviantart.com/stym0r/art/Bart-Simpson-Programmer-134362686


BOOM Example

• Example from boom/src/main/scala/lsu/lsu.scala
• Print a trace of all loads and stores, for verifying memory consistency.
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if (MEMTRACE_PRINTF) {
when (commit_store || commit_load) {

val uop = Mux(commit_store, stq(idx).bits.uop, ldq(idx).bits.uop)
val addr = Mux(commit_store, stq(idx).bits.addr.bits, ldq(idx).bits.addr.bits)
val stdata = Mux(commit_store, stq(idx).bits.data.bits, 0.U)
val wbdata = Mux(commit_store, stq(idx).bits.debug_wb_data, ldq(idx).bits.debug_wb_data)
printf(midas.targetutils.SynthesizePrintf("MT %x %x %x %x %x %x %x\n",
io.core.tsc_reg, uop.uopc, uop.mem_cmd, uop.mem_size, addr, stdata, wbdata))

}
}



Synthesizable Printfs/Assertions
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Pros:
• FPGA simulation speed
• Real-time trigger-based
• Consumes small amount of FPGA 

resources (compared to ILA)
• Key signals have pre-written 

assertions in re-usable 
components/libraries

Cons:
• Low visibility: No waveform/state
• Assertions are best added while 

writing source RTL rather than 
during 
“investigative” debugging



Dromajo Co-Simulation

• Dromajo – RV64GC emulator 
designed for RTL co-simulation

• Can be used to debug BOOM in 
FireSim through functional co-
simulation and comparison

• Or any other design with a functional 
implementation in Dromajo

• Find functional bugs billions of 
cycles into simulations

• Find divergence against functional 
golden model

• Dump waveforms for affected signals
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[error] EMU PC ffffffe001055d84, DUT PC ffffffe001055d84
[error] EMU INSN 14102973, DUT INSN 14102973
[error] EMU WDATA 000220d6, DUT WDATA 000220d4
[error] EMU MSTATUS a000000a0, DUT MSTATUS 00000000
[error] DUT pending exception -1 pending interrupt -1
[ERROR] Dromajo: Errored during simulation tick with 8191

*** FAILED *** (code = 8191) after 2,356,509,311 cycles
time elapsed: 2740.8 s, simulation speed = 859.79 KHz
FPGA-Cycles-to-Model-Cycles Ratio (FMR): 8.14
Runs 2356509311 cycles
FAIL] FireSim Test

2 billion cycle divergence where receiving an 
interrupt during mis-speculation affects 

architectural state (EPC)



Debugging Co-Simulation
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Debugging Using Software RTL Simulation
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Modifying internal 
simulated target hardware, 
no new external endpoints

Target-Level SW 
Simulation

What 
Am I 

doing?

Simulator-Level SW 
Simulation

Adding/Modifying new 
interfaces and endpoints, 

modifying simulation models

Midas-Level SW 
Simulation

FPGA-Level SW 
Simulation

My FireSim Simulation Is Not Working



Debugging Using Software RTL Simulation
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Target-Level 
Simulation

• Software Simulation
• Target Design 

Untransformed
• No Host-FPGA 

interfaces

MIDAS-Level 
Simulation

• Software Simulation
• Target Design 

Transformed by 
Golden Gate

• Host-FPGA 
interfaces/shell 
emulated using 
abstract models

FPGA-Level 
Simulation

• Software Simulation
• Target Design 

Transformed by 
Golden Gate

• Host-FPGA 
interfaces/shell 
simulated by the 
FPGA tools
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RTL Design
Physical
DRAM

100ns
latency

<- Resp Queue

Req Queue ->

DRAM
Model

100
cycle

latency

Mem 
Channel

“FAME-1” Transformed RTL Design

Target-Level 
SW Simulation

FPGA Fabric

Debugging Using Software RTL Simulation
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RTL Design
Physical
DRAM

100ns
latency

<- Resp Queue

Req Queue ->

DRAM
Model

100
cycle

latency

Mem 
Channel

“FAME-1” Transformed RTL Design

MIDAS-Level 
SW Simulation

FPGA Fabric

Abstract 
ModelTarget-Level 

SW Simulation

Debugging Using Software RTL Simulation
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RTL Design
Physical
DRAM

100ns
latency

<- Resp Queue

Req Queue ->

DRAM
Model

100
cycle

latency

Mem 
Channel

“FAME-1” Transformed RTL Design

MIDAS-Level 
SW Simulation

FPGA Fabric

Abstract 
ModelTarget-Level 

SW Simulation

FPGA-Level 
SW Simulation

Debugging Using Software RTL Simulation



Debugging Using Software RTL Simulation
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Level Waves VCS Verilator XSIM

Target Off ~5 kHz ~5 kHz N/A

Target On ~1 kHz ~5 kHz N/A

MIDAS Off ~4 kHz ~2 kHz N/A

MIDAS On ~3 kHz ~1 kHz N/A

FPGA On ~2 Hz N/A ~0.5 Hz



The FireSim Vision: Speed and Visibility

• High-performance simulation
• Full application workloads
• Tunable visibility & resolution
• Unique data-based insights
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Interactive Example
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Hands-on Synthesizable Printf Example

• We would like to observe when the SHA3 algorithm completes a 
round, and some details about the round. This is represented by the 
following code segment (https://github.com/ucb-
bar/sha3/blob/master/src/main/scala/dpath.scala#L103)
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when(io.absorb){
state := state
when(io.aindex < UInt(round_size_words)){

state((io.aindex%UInt(5))*UInt(5)+(io.aindex/UInt(5))) := 
state((io.aindex%UInt(5))*UInt(5)+(io.aindex/UInt(5))) ^ io.message_in

}
}

https://github.com/ucb-bar/sha3/blob/master/src/main/scala/dpath.scala#L103


Hands-on Synthesizable Printf Example

• We would like to observe when the SHA3 algorithm completes a 
round, and some details about the round. This is represented by the 
following code segment (https://github.com/ucb-
bar/sha3/blob/master/src/main/scala/dpath.scala#L103)
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when(io.absorb){
state := state
if(p(Sha3PrintfEnable)){

printf(midas.targetutils.SynthesizePrintf("SHA3 finished an iteration with index %d and 
message %x\n", io.aindex, io.message_in))

}
when(io.aindex < UInt(round_size_words)){

state((io.aindex%UInt(5))*UInt(5)+(io.aindex/UInt(5))) := 
state((io.aindex%UInt(5))*UInt(5)+(io.aindex/UInt(5))) ^ io.message_in

}
}

https://github.com/ucb-bar/sha3/blob/master/src/main/scala/dpath.scala#L103


Hands-on Synthesizable Printf Example

• We use the following build recipe for this FPGA image 
(in deploy/config_build_recipes.ini) is:
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[firesim-singlecore-sha3-no-nic-l2-llc4mb-ddr3-print]
DESIGN=FireSim
TARGET_CONFIG=
DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_WithFireSimTestChipConfigTweaks_chipyard.Sha3RocketConfig 
PLATFORM_CONFIG=WithPrintfSynthesis_F120MHz_BaseF1Config
instancetype= z1d.2xlarge
deploytriplet=None



Hands-on Synthesizable Printf Example
Update our workload to copy the output printf file:
• vim workloads/sha3-bare-rocc.json
• Add the synthesized-prints.out to our simulation output

{
"benchmark_name": "sha3-bare-rocc",
"common_simulation_outputs": [

"uartlog", "synthesized-prints.out"
],
"common_bootbinary": "../../../../../generators/sha3/software/tests/bare/sha3-rocc.riscv",
"common_rootfs": "../../../../../software/firemarshal/boards/default/installers/firesim/dummy.rootfs"}
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Hands-on Synthesizable Printf Example
f1_16xlarges=0
m4_16xlarges=0
f1_4xlarges=0
f1_2xlarges=1

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=no_net_config
no_net_num_nodes=1
linklatency=6405
switchinglatency=10
netbandwidth=200
profileinterval=-1

defaulthwconfig=firesim-singlecore-
sha3-no-nic-l2-llc4mb-ddr3-print

[workload]
workloadname=sha3-bare-rocc.json

• Setup the 
firesim/deploy/config_runtime.ini file:

• Select the AGFI that was synthesized with the 
printf

• Select the bare-metal SHA3 test workload
• Boot the simulation by running the 

following sequence of commands:
• firesim infrasetup

• This should take about 10 minutes
• firesim runworkload

• This should take about 2 minutes

41

$ firesim infrasetup

$ firesim runworkload



Hands-on Synthesizable Printf Example
Output file in deploy/results-workload/<timestamp>-sha3-bare-rocc/sha3-bare-rocc0/synthesized-prints.out
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CYCLE:     36086158 SHA3 finished an iteration with index  0 and message 0000000000000000
CYCLE:     36086159 SHA3 finished an iteration with index  1 and message 0000000000000000
CYCLE:     36086160 SHA3 finished an iteration with index  2 and message 0000000000000000
CYCLE:     36086161 SHA3 finished an iteration with index  3 and message 0000000000000000
CYCLE:     36086162 SHA3 finished an iteration with index  4 and message 0000000000000000
CYCLE:     36086163 SHA3 finished an iteration with index  5 and message 0000000000000000
CYCLE:     36086164 SHA3 finished an iteration with index  6 and message 0000000000000000
CYCLE:     36086165 SHA3 finished an iteration with index  7 and message 0000000000000000
CYCLE:     36086166 SHA3 finished an iteration with index  8 and message 0000000000000000
CYCLE:     36086167 SHA3 finished an iteration with index  9 and message 0000000000000000
CYCLE:     36086168 SHA3 finished an iteration with index 10 and message 0000000000000000
CYCLE:     36086169 SHA3 finished an iteration with index 11 and message 0000000000000000
CYCLE:     36086170 SHA3 finished an iteration with index 12 and message 0000000000000000
CYCLE:     36086171 SHA3 finished an iteration with index 13 and message 0000000000000000
CYCLE:     36086172 SHA3 finished an iteration with index 14 and message 0000000000000000
CYCLE:     36086173 SHA3 finished an iteration with index 15 and message 0000000000000000
CYCLE:     36086174 SHA3 finished an iteration with index 16 and message 0000000000000000
CYCLE:     36086175 SHA3 finished an iteration with index 17 and message 0000000000000000
CYCLE:     36086203 SHA3 finished an iteration with index  0 and message 0000000000000000
CYCLE:     36086204 SHA3 finished an iteration with index  1 and message 0006000000000000
CYCLE:     36086205 SHA3 finished an iteration with index  2 and message 0000000000000000
CYCLE:     36086206 SHA3 finished an iteration with index  3 and message 0000000000000000
CYCLE:     36086207 SHA3 finished an iteration with index  4 and message 0000000000000000
…



Hands-on Synthesizable Printf Example
Don’t forget to terminate your runfarms (otherwise, we are going to 
pay for a lot of FPGA time)

43

$ firesim terminaterunfarm

Type yes at the prompt to confirm



Summary

• Debugging Using Software Simulation (docs)
• Target-Level
• MIDAS-Level
• FPGA-Level

• Debugging Using Integrated Logic Analyzers (docs)
• Advanced Debugging and Profiling Features

• TracerV (docs)
• Assertion and Print Synthesis (docs)
• AutoCounter (docs)

• FireSim Debugging and Profiling Future Vision
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https://docs.fires.im/en/latest/Advanced-Usage/Debugging-in-Software/index.html
https://docs.fires.im/en/latest/Advanced-Usage/Debugging-and-Profiling-on-FPGA/Debugging-Hardware-Using-ILA.html
https://docs.fires.im/en/latest/Advanced-Usage/Debugging-and-Profiling-on-FPGA/TracerV.html
https://docs.fires.im/en/latest/Advanced-Usage/Debugging-and-Profiling-on-FPGA/Printf-Synthesis.html
https://docs.fires.im/en/latest/Advanced-Usage/Debugging-and-Profiling-on-FPGA/AutoCounter.html
https://docs.fires.im/
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