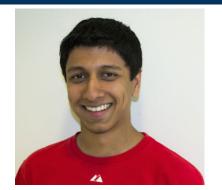
FireSim and Chipyard Tutorial: Intro

Sagar Karandikar

UC Berkeley

sagark@eecs.berkeley.edu



Presenters/Organizers

Sagar Karandikar

Jerry Zhao

Harrison Liew

Abraham Gonzalez

Nathan Pemberton

Albert Ou

Alon Amid

Borivoje Nikolić

Krste Asanović

A Golden Age in Computer Architecture

- No more traditional scaling...
- An architect's dream: everyone wants custom microarchitectures and HW/SW co-designed systems
- Also, a golden age to have direct impact as researchers
 - Exploding open-source hardware environment
 - An open-ISA that can run software we care about

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

A Dark Age in Computer Architecture tools

- What do we need to do good architecture research?
 - Need tools that let us evaluate designs on a variety of metrics:
 - Functionality
 - Performance
 - Power
 - Area
 - Frequency
 - Especially in small teams (grad students, startups), these tools need to be agile
 - Historically, without good open IP, had to build abstract arch/uarch simulators out of necessity
 - But now, we have much better IP and software compatibility, so what's stopping us?

A Dark Age in Computer Architecture tools

- Designed to be operated by hundreds of engineers
- Not, 10s of engineers or 1s-10s of grad students

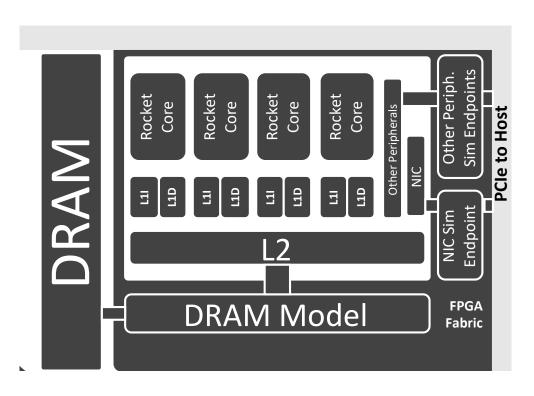
- Two hard questions:
 - Where do I get a collection of well-tested hardware IP + complex software stacks that run on it?
 - How do I quickly obtain performance measurements for a novel HW/SW system?

Two hard questions, answered!

 Where do I get a collection of well-tested hardware IP + complex software stacks that run on it?

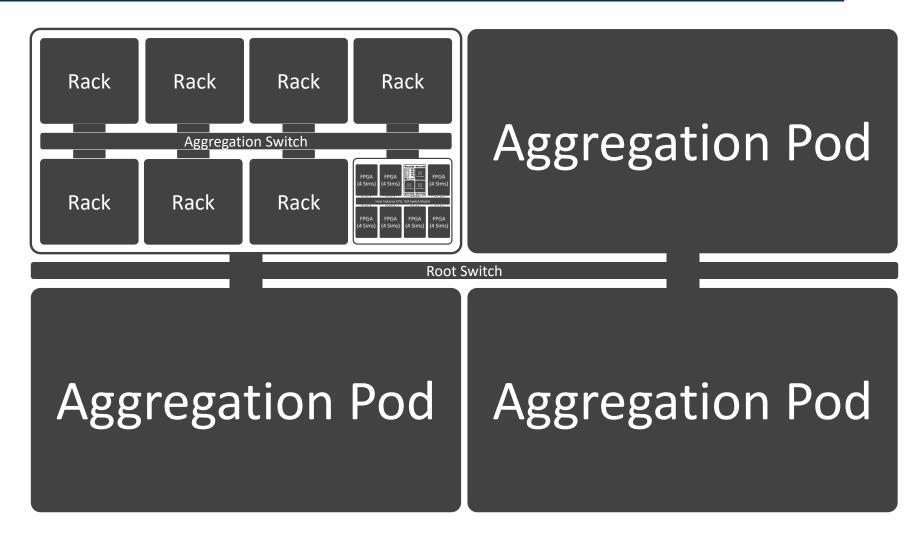
How do I quickly obtain performance measurements for a novel HW/SW system?

What can I do with these tools?


Measure Functionality, Performance, Power, Area, Frequency for real HW/SW systems, quickly and easily, with small teams of engineers

What kinds of designs can I work with?

- RISC-V Cores:
 - Rocket Chip In-Order core, industry proven
 - SonicBOOM Out-of-Order Superscalar core
- Accelerators
 - Hwacha Vector Accelerator
 - sha3 accelerator
 - NVDLA (NVIDIA Deep Learning Accelerator)
 - ML Accelerators (Gemmini)
- Peripherals/other IP
 - L2 Cache, UART, Disk, Ethernet NIC, etc.
- FPGA-Simulation Models
 - Large LLCs, large DDR3 memory systems

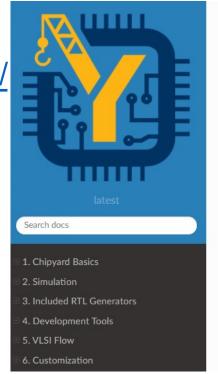


Single SoC System

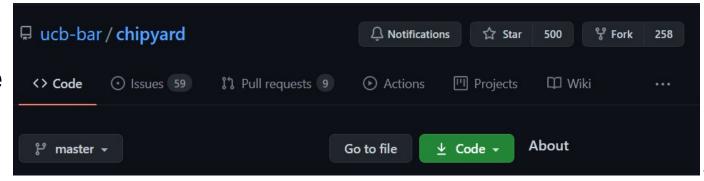
What kinds of designs can I work with?

Chipyard is Community-Friendly

Documentation:


- https://chipyard.readthedocs.io/en/dev/
- 133 pages
- Most of today's tutorial content is covered there

Mailing List:


google.com/forum/#!forum/chipyard

Open-sourced:

- All code is hosted on GitHub
- Issues, feature-requests, PRs are welcomed

Growing FireSim Community!

- Companies publicly announced using FireSim
 - Esperanto Maxion ET
 - Intensivate IntenCore
 - SiFive validation paper @ VLSI'20
- Chipyard integration
- Projects with public FireSim support
 - Rocket Chip, BOOM
 - Hwacha Vector Accelerator
 - Keystone Secure Enclave
 - NVIDIA Deep Learning Accelerator (NVDLA)
 - https://devblogs.nvidia.com/nvdla/
 - BOOM Spectre replication/mitigation
 - More in-progress! PR yours!

- Many academic users
 - ISCA '18: Maas et. al. HW-GC Accelerator (Berkeley)
 - MICRO '18: Zhang et. al. "Composable Building Blocks to Open up Processor Design" (MIT)
 - RTAS '20: Farshchi et. al. BRU (Kansas)
 - EuroSys '20: Lee et. al. Keystone (Berkeley)
 - OSDI '21: Ibanez et. al. nanoPU (Stanford)
 - See FireSim website for more!
- Education
 - Berkeley CS152/252
 - CCC/RV Summit tutorials
 - MICRO 2019 full-day tutorial
- More than 100 mailing list members
- More than 250 unique cloners per week

FireSim ISCA'18 paper selected as an IEEE Micro Top Pick of 2018 Arch. Confs and as the CACM Research Highlights Nominee from ISCA'18

Today's Agenda

09:00: Introduction, logistics, etc. – Sagar

09:05: Chipyard Basics – Jerry

09:35: Customizing the SoC – Jerry

10:05: Integrating Verilog Designs in Chipyard - Abe

10:15: Coffee break

10:25: Hammer VLSI flow – Harrison

10:55: FPGA Prototyping – Abe

11:25: FireSim Introduction – Sagar

11:55: Lunch

12:45: FireSim – Building Hardware Designs - Sagar

13:15: FireSim – Building Software Workloads - Nathan

13:45: Running a FireSim Simulation: Simulating the SHA3 w/Linux - Albert

14:15: Coffee break

14:25: Debugging and Profiling a FireSim-simulated design - Alon

14:50: Conclusion - Alon

