
1

Architecture and Components
Jerry Zhao 
jzh@berkeley.edu
UC Berkeley



Use Cases

2

Custom SoC architecture
New blocks + reusing 

existing blocks

RTL Simulation running test 
binaries/micro-benchmarks

FPGA-accelerated simulation
running full workloads

FPGA prototyping for fast 
cool demos

Tape-out the SoC to get 
actual silicon results



Organization

3

What is Chipyard?
• An organized framework for 

various SoC design tools
• A curated IP library of open-

source RISC-V SoC 
components

• A methodology for agile SoC 
architecture design, 
exploration, and evaluation



4

SoC architecture and 
generators

Organization



SoC Architecture

5

Digital SoC Architecture
RocketTile

Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
Accelerator

MMIO 
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2 

Bank
L2 

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM 
Chan.

DRAM 
Chan.



Tiles and Cores

6

Digital SoC Architecture
RocketTile

Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
Accelerator

MMIO 
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2 

Bank
L2 

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM 
Chan.

DRAM 
Chan.

Tiles:
• Each Tile contains a RISC-V core 

and private caches
• Several varieties of Cores 

supported
• Interface supports integrating your 

own RISC-V core implementation



Rocket and BOOM

7

Rocket:
• First open-source RISC-V CPU
• In-order, single-issue RV64GC core
• Efficient design point for low-power devices
SonicBOOM:
• Superscalar out-of-order RISC-V CPU
• Advanced microarchitectural features to maximize IPC
• TAGE branch prediction, OOO load-store-unit, register 

renaming
• High-performance design point for general-purpose 

systems



Rocket and BOOM

8

Rocket and SonicBOOM:
• Support RV64GC ISA profile
• Boots off-the-shelf RISC-V Linux distros (buildroot, 

Fedora, etc.)
• Fully synthesizable, tapeout-proven
• Described in Chisel
• Fully open-sourced



PULP Cores in 

9

CVA6 (Formerly Ariane):
• RV64IMAC 6-stage single-issue in-order core
• Open-source
• Implemented in SystemVerilog
• Developed at ETH Zurich as part of PULP,
• Now maintained by OpenHWGroup

Ibex (Formerly Zero-RISCY):
• RV64IMC 2-stage single-issue in-order core
• Open-source 
• Implemented in SystemVerilog
• Developed at ETH Zurich as part of PULP
• Now maintained by lowRISC



Sodor Education Cores

10

Sodor Core Collection
• Collection of RV32IM cores for 

teaching and education
• 1-stage, 2-stage, 3-stage, 5-stage 

implementations
• Micro-coded “bus-based” 

implementation
• Used in introductory computer 

architecture courses at Berkeley

RISC-V 
Sodor Micro-coded



RoCC Accelerators

11

Digital SoC Architecture
RocketTile

Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
Accelerator

MMIO 
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2 

Bank
L2 

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM 
Chan.

DRAM 
Chan.

RoCC Accelerators:
• Tightly-coupled accelerator interface
• Attach custom accelerators to Rocket 

or BOOM cores



RoCC Accelerators

12

BOOM/Rocket

L1I$ L1D$

PTWTLBs
Custom 

Accelerator 
Implementation

L2

SystemBus

Peripherals

1. Core automatically decodes + sends 
custom instructions to accelerator

2. Accelerator can write back into core 
registers

3. Accelerator can support virtual-
addressing by sharing core PTW/TLB

4. Accelerator can fetch-from/write-to 
coherent L1 data cache or outer-
memory

Flexible interface supports a variety of 
accelerator designs

Included in Chipyard:
• Gemmini ML accelerator
• Hwacha vector accelerator
• SHA3 accelerator

1
2

3

4

4



MMIO Accelerators

13

Digital SoC Architecture
RocketTile

Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
Accelerator

MMIO 
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2 

Bank
L2 

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM 
Chan.

DRAM 
Chan.

MMIO Accelerators:
• Controlled by MMIO-mapped 

registers
• Supports DMA to memory system
• Examples:

• Nvidia NVDLA accelerator
• FFT accelerator generator



Coherent Interconnect

14

Digital SoC Architecture
RocketTile

Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
Accelerator

MMIO 
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2 

Bank
L2 

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM 
Chan.

DRAM 
Chan.

TileLink Standard:
• TileLink is open-source chip-scale 

interconnect standard
• Comparable to AXI/ACE
• Supports multi-core, accelerators, 

peripherals, DMA, etc
Interconnect IP:
• Library of TileLink RTL generators 

provided in RocketChip
• RTL generators for crossbar-based 

buses
• Width-adapters, clock-crossings, 

etc.
• Adapters to AXI4, APB



Protocol Shims

15

CVA6WrapperTile

CVA6 Verilog
CVA6 
Core PTW

L1I$ L1D$

AXI4Bus

AXI4ToTL

NVDLA Wrapper

NVDLA Verilog

NVDLA

AXI4 DMA

AXI4ToTL

AMBA-to-TileLink shims enable 
easy integration with existing IP
• Works for 

cores/peripherals/accelerators
• Drop-in Verilog integration of 

CVA-6, NVDLA



NoC Interconnect

16

Digital SoC Architecture
RocketTile

Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
Accelerator

MMIO 
Accelerator

Constellation Network-on-Chip 
Interconnect

Control Bus

UART GPIOs
L2 

Bank
L2 

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM 
Chan.

DRAM 
Chan.

NEW in Chipyard 1.8.0:

Constellation NoC 
generator



Constellation
A parameterized Chisel 
generator for SoC 
interconnects
• Protocol-independent 

transport layer
• Supports TileLink, AXI-4
• Highly parameterized
• Deadlock-freedom
• Virtual-channel wormhole-

routing

17



L2/DRAM

18

Digital SoC Architecture
RocketTile

Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
Accelerator

MMIO 
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2 

Bank
L2 

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM 
Chan.

DRAM 
Chan.

Shared memory:
• Open-source TileLink L2 developed by 

SiFive
• Directory-based coherence with 

MOESI-like protocol
• Configurable capacity/banking

• Support broadcast-based coherence in 
no-L2 systems

• Support incoherent memory systems
DRAM:
• AXI-4 DRAM interface to external 

memory controller
• Interfaces with DRAMSim



Peripherals and IO

19

Digital SoC Architecture
RocketTile

Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
Accelerator

MMIO 
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2 

Bank
L2 

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM 
Chan.

DRAM 
Chan.

Peripherals and IO:
• Open-source RocketChip blocks

• Interrupt controllers
• JTAG, Debug module, 

BootROM
• UART, GPIOs, SPI, I2C, PWM, 

etc.
• TestChipIP: useful IP for test chips

• Clock-management devices
• SerDes
• Scratchpads



SoC Architecture

20

Digital SoC Architecture
RocketTile

Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
Accelerator

MMIO 
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2 

Bank
L2 

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM 
Chan.

DRAM 
Chan.



24

Organization



25

SoC Configuration

Organization



Composable Configurations

26

Digital SoC Architecture
RocketTile

Rocket
Core PTW

L1I$ L1D$

Tile Bus

BoomTile
Boom
Core PTW

L1I$ L1D$

Tile Bus

R
oC

C
Accelerator

MMIO 
Accelerator

System Bus

Periphery Bus

Control Bus

Front Bus

UART GPIOs
L2 

Bank
L2 

Bank
BootROM

PLIC

CLINT

Debug

Serdes

Memory Bus

DRAM 
Chan.

DRAM 
Chan.

class CustomConfig extends Config(
new WithL1CacheWays(4) ++
new WithAsyncTiles ++
new WithSystemBusWidth(128) +
new WithFPGemmini ++
new With3WideBooms ++
new WithL2TLBs(512) ++
new WithL2Sets(1024) ++

new WithDefaultGemmini ++
new WithNRocketCores(1) ++
new WithNBoomCores(1) ++
new WithBootROM ++
new WithUART ++
new WithJtagDTM ++
new WithGPIOs ++
new WithInclusiveCache(512) ++

)



27

Organization



28

Organization
SW RTL Simulation:
• RTL-level simulation with 

Verilator or VCS
• Hands-on tutorial next
FPGA prototyping:
• Fast, non-deterministic 

prototypes
• Overview of flow later
Hammer VLSI flow:
• Tapeout a custom config in 

some process technology
• Overview of flow later
FireSim:
• Fast, accurate FPGA-

accelerated simulations
• Hands-on tutorial later



29

Organization

IO and Harness configuration



Multipurpose

30

ChipHarness

ChipTop

DigitalTop

IO
C

ell

IO
C

ell

IO
C

ell

IO
C

ell

Analog 
Serdes

PLL

FMC

Tethered FPGA

TestHarness

ChipTop

DigitalTop

D
R
AM
Sim

.cc

Sim
U
AR
T.cc

Sim
G
PIO

s.cc

Sim
JTAG

.cc

Sim
Serial.cc

TestD
river.v

FireSimHarness

ChipTop

DigitalTop

AXI4Bridge

U
AR

TBridge

SerialBridge

C
lockBridge

FASED Host
UART

Host
Serial

Clock
Driver

Digital System configuration

Chip IO configuration

Harness Configuration



Configuring IO + Harness

31

class CustomConfig extends Config(
new WithDefaultGemmini ++
new WithNRocketCores(1) ++
new WithNBoomCores(1) ++
new WithBootROM ++
new WithUART ++
new WithJtagDTM ++
new WithGPIOs ++
new WithInclusiveCache(512) ++

new WithIOCellModels ++

new WithDRAMSim ++
new WithSimUART ++
new WithSimJTAG ++
new WithSimSerial

)

TestHarness

ChipTop

DigitalTop

D
R

AM
Sim

.c
c

Sim
U

AR
T.cc

Sim
G

PIO
s.c

c

Sim
JTAG

.cc

Sim
Serial.cc

TestD
river.v

Digital 
System

Chip IO

Harness

Digital Config

IO Binders

Harness Binders



32

Organization



33

Organization

FIRRTL Transforms



FIRRTL

34

FIRRTL emits tool-friendly, synthesizable Verilog

C/C++

Rust
LLVM IR

LLVM PassManager x86 assembly

Dead code 
elimination

Statistics 
collection Optimization ARM 

assembly

Chisel

Verilog
FIRRTL IR

FIRRTL Passes Verilog for 
SW Sim

Dead 
expression 
elimination

Statistics 
collection

Netlist 
manipulation Verilog for 

FPGA Sim



FIRRTL Passes
FireSim passes:
• Bridge target assertions/printfs

to be visible on the host PC
• Provide FPGA utilization 

optimizations
• Implement debugging and 

analysis features (AutoILA, 
AutoCounter)

35

VLSI passes:
• Restructure module hierarchy
• Replace target memories with 

foundry SRAMs



36

Organization
Configs: Describe 
parameterization of a multi-
generator SoC
Generators: Flexible, reusable 
library of open-source Chisel 
generators (and Verilog too)
IOBinders/HarnessBinders: 
Enable configuring IO strategy 
and Harness features
FIRRTL Passes: Structured 
mechanism for supporting multiple 
flows
Target flows: Different use-cases 
for different types of users



37

Learning Curve

Exploratory-level
• Configure a custom SoC from pre-existing 

components
• Generate RTL, and simulate it in RTL level 

simulation
• Evaluate existing RISC-V designs

Evaluation-level
• Integrate or develop custom hardware IP into 

Chipyard
• Run FireSim FPGA-accelerated simulations
• Push a design through the Hammer VLSI flow
• Build your own system

Advanced-level
• Configure custom IO/clocking setups
• Develop custom FireSim extensions
• Integrate and tape-out a complete SoC



38

For Education
Proven in many Berkeley Architecture 
courses
• Hardware for Machine Learning
• Undergraduate Computer Architecture
• Graduate Computer Architecture
• Advanced Digital ICs
• Tapeout HW design course

Advantages of common shared HW 
framework
• Reduced ramp-up time for students
• Students learn framework once, reuse it in 

later courses
• Enables more advanced course projects 

(tapeout a chip in 1 semester)



41

• Add new accelerators for emerging applications
• Modify OS/driver/software
• Perform design-space exploration across many parameters
• Test and evaluate in RTL-simulation, FireSim
• Tapeout using HAMMER VLSI flow

For Research



42

Community
Documentation:
• https://chipyard.readthedocs.io/en/de

v/
• 133 pages
• Most of today’s tutorial content is 

covered there

Mailing List:
• google.com/forum/#!forum/chipyard

Open-sourced:
• All code is hosted on GitHub
• Issues, feature-requests, PRs are 

welcomed

https://chipyard.readthedocs.io/en/dev/
https://chipyard.readthedocs.io/en/dev/
https://groups.google.com/forum/


43

An open, extensible research and 
design platform for RISC-V SoCs
• Unified framework of 

parameterized generators
• One-stop-shop for RISC-V SoC 

design exploration
• Supports variety of flows for 

multiple use cases
• Open-sourced, community and 

research-friendly


