
Debugging, Testing, and
Profiling

FireSim Intensive
Chisel Community Conference 2018

Speaker: Alon Amid

Agenda

• FireSim Debugging Using Software Simulation
• FireSim Debugging Using Integrated Logic Analyzers
• Advanced FPGA-Based Debugging and Profiling Features
• The FireSim Vision for Debugging and Profiling

2

Debugging Using Software Simulation

3

Modifying internal
simulated target hardware,
no new external endpoints

Target-Level SW
Simulation

What
Am I

doing?

Simulator-Level SW
Simulation

Adding/Modifying new
interfaces and endpoints,

modifying simulation models

Midas-Level SW
Simulation

FPGA-Level SW
Simulation

My FireSim Simulation Is Not Working

Debugging Using Software Simulation

4

Target-Level
Simulation

• Software Simulation
• Target Design

Untransformed
• No Host-FPGA

interfaces

MIDAS-Level
Simulation

• Software Simulation
• Target Design

Transformed by
MIDAS

• Host-FPGA
interfaces/shell
emulated using
abstract models

FPGA-Level
Simulation

• Software Simulation
• Target Design

Transformed by
MIDAS

• Host-FPGA
interfaces/shell
simulated by the
FPGA tools

5

Remember
this slide from

Sagar’s
presentation?

Debugging Using Software Simulation

6

RTL Design
Physical
DRAM

100ns
latency

<- Resp Queue

Req Queue ->

DRAM
Model

100
cycle

latency

Mem
Channel

“FAME-1” Transformed RTL Design

Target-Level
SW Simulation

FPGA Fabric

Debugging Using Software Simulation

7

RTL Design
Physical
DRAM

100ns
latency

<- Resp Queue

Req Queue ->

DRAM
Model

100
cycle

latency

Mem
Channel

“FAME-1” Transformed RTL Design

MIDAS-Level
SW Simulation

FPGA Fabric

Abstract
ModelTarget-Level

SW Simulation

Debugging Using Software Simulation

8

RTL Design
Physical
DRAM

100ns
latency

<- Resp Queue

Req Queue ->

DRAM
Model

100
cycle

latency

Mem
Channel

“FAME-1” Transformed RTL Design

MIDAS-Level
SW Simulation

FPGA Fabric

Abstract
ModelTarget-Level

SW Simulation

FPGA-Level
SW Simulation

Debugging Using Software Simulation

Debugging Using Software Simulation

9

Level Waves VCS Verilator XSIM

Target Off ~5 kHz ~5 kHz N/A

Target On ~1 kHz ~5 kHz N/A

MIDAS Off ~4 kHz ~2 kHz N/A

MIDAS On ~3 kHz ~1 kHz N/A

FPGA On ~2 Hz N/A ~0.5 Hz

• Target-Level Simulation
In firesim/target-design/firechip/vsim

$ make DESIGN=<YourDesign> CONFIG=<YourConfig> debug

$./simv-<YourDesign>-<YourConfig>-debug +max-cycles=50000 +vcdplusfile=<WaveformFileName>.vpd
../tests/<InputTest>.riscv

• MIDAS-level Simulation
In firesim/sim

$ make <verilator|vcs>-debug

$ make EMUL=<verilator|vcs> DESIGN=FireSimNoNIC run-asm-test-debug

• FPGA-Level Simluation
In firesim/sim

$ make xsim

$ make xsim-dut <VCS=1> &

$ make run-xsim SIM_BINARY=<PATH/TO/DRIVER/BINARY/FOR/TARGET/TO/RUN>

**FPGA-level simulation currently does not support DMA_PCIS (which is used for the NIC interface)

10

Debugging Using Software Simulation

11

“Everything looks OK in SW simulation, but there is still a bug somewhere”

“My bug only appears after hours of running Linux on my simulated HW”

When SW Simulation Debugging is Not Enough…

Debugging Using Integrated Logic Analyzers

Integrated Logic Analyzers (ILAs)

• Common debugging feature provided by FPGA vendors

• Continuous recording of a sampling window of up to
1024 cycles.
• Stores recorded samples in BRAM.

• Realtime trigger-based sampled output of probed signals
• Multiple probes ports can be combined to a single trigger
• Trigger can be in any location within the sampling window

• On the AWS F1-Instances, ILA interfaced through a
debug-bridge and server

12

From: aws-fpga cl_hello_world example

Debugging Using Integrated Logic Analyzers

AutoILA – Automation of ILA integration with FireSim
• Annotate requested signals and bundles in the Chisel source code
• Automatic configuration and generation of the ILA IP in the FPGA

toolchain
• Automatic expansion and wiring of annotated signals to the top level

of a design using a FIRRTL transform.
• Remote waveform and trigger

setup from the manager
instance

13

Debugging using Integrated Logic Analyzers

14

Pros:
• No emulated parts – what you

see is what’s running on the
FPGA

• FPGA simulation speed - O(MHz)
compared to O(KHz) in software
simulation

• Real-time trigger-based

Cons:
• Requires a full build to modify

visible signals/triggers (takes
several hours)

• Limited sampling window size
• Consumes FPGA resources

Advanced FPGA-Based Debugging Features

• FPGA-based simulation enables high simulation speed, which enables
advanced debugging and profiling tools.
• Reach “deep” in simulation time, and obtain large levels of coverage and

data
• Examples:
• TracerV
• Synthesizable Assertions

15

Simulated
Time

SW
Simulation

FPGA-based
Simulation

TracerV

16

• Out-of-band full instruction execution trace
• MIDAS widget connected to target trace

ports
• By default, large amount of info wired out

of Rocket/BOOM, per-hart, per-cycle:
• Instruction Address
• Instruction
• Privilege Level
• Exception/Interrupt Status, Cause

• TracerV can rapidly generate several TB of
data.

TracerV

• Out-of-Band software-level debugging and
profiling: Profiling does not perturb execution
• Useful for kernel and hypervisor level cycle-

sensitive profiling
• Examples:

• Co-Optimization of NIC and Network Driver
• Keystone Secure Enclave Project
• High-performance hardware-specific code

(supercomputing?)
• Requires large-scale analytics for insightful

profiling and optimization.

17

TracerV

18

Pros:
• Out-of-Band (no impact

on workload execution)
• SW-centric method
• Large amounts of data

Cons:
• Slower simulation

performance (40 MHz)
• No HW visibility
• Large amounts of data

Synthesizable Assertions

• Assertions – rapid error checking embedded in HW source code.
• Commonly used in SW Simulation
• Halts the simulation upon a triggered assertion. Represented as a “stop”

statement in FIRRTL
• By defaults, emitted as non-synthesizable SV functions ($fatal)

19

From: Trillion-Cycle Bug Finding Using FPGA-Accelerated Simulation Donggyu Kim, Christopher Celio,
Sagar Karandikar, David Biancolin, Jonathan Bachrach, Krste Asanović. ADEPT Winter Retreat 2018

From: BROOM: An open-source Out-of-Order processor with resilient low-voltage operation in 28nm CMOS,
Christopher Celio, Pi-Feng Chiu, Krste Asanovic, David Patterson and Borivoje Nikolic. HotChip 30, 2018

Synthesizable Assertions

• Synthesizable Assertions on FPGA
• Transform FIRRTL stop statements into synthesizable logic
• Insert combinational logic and signals for the stop condition arguments
• Insert encodings for each assertion (for matching error statements in SW)
• Wire the assertion logic output to the Top-Level
• Generate timing tokens for cycle-exact assertions
• Assertion checker records the cycle and halts simulation when assertion is

triggered

20

Synthesizable Assertions

• Previously a research feature presented in DESSERT [1]
• Helped Identify BOOM bugs trillions of cycles into execution
• Integrated into FireSim in the latest release.

21

[1] Kim, D., Celio, C., Karandikar, S., Biancolin, D., Bachrach, J. and Asanovic, K., DESSERT: Debugging RTL Effectively
with State Snapshotting for Error Replays across Trillions of cycles. The International Conference on Field-
Programmable Logic and Applications (FPL), 2018

Synthesizable Assertions

22

Pros:
• FPGA simulation speed
• Real-time trigger-based
• Consumes small amount of FPGA

resources (compared to ILA)
• Key signals have pre-written

assertions in re-usable
components/libraries

Cons:
• Low visibility: No waveform/state
• Assertions are best added while

writing source RTL rather than
during
“investigative” debugging

The FireSim Vision: Speed and Visibility

• High-performance simulation
• Full application workloads
• Tunable visibility & resolution
• Unique data-based insights

23

Speed and Visibility – How do we get there?

• Integration of additional DESSERT features
• Hardware state snapshot extraction from FPGA to software simulation using

arbitrary software triggers
• Easy-to-use information transfer between execution traces and software

hooks

• Data-Processing pipeline for insights from large-scale traces
• O(GB)-O(TB) out-of-band logs require big-data analysis methods for insights

(Golden model comparison is one potential method)
• Potential unique insights: can collect globally-cycle-accurate out-of-band

instruction traces from a networked datacenter simulation.

24

Summary

• Debugging Using Software Simulation (docs)
• Target-Level
• MIDAS-Level
• FPGA-Level

• Debugging Using Integrated Logic Analyzers (docs)
• Advanced Debugging and Profiling Features
• TracerV (docs)
• Assertion Synthesis (docs)

• FireSim Debugging and Profiling Future Vision

25

Check out https://docs.fires.im/

for more usage details

https://docs.fires.im/en/latest/Advanced-Usage/Debugging/RTL-Simulation.html
https://docs.fires.im/en/latest/Advanced-Usage/Debugging/Debugging-Hardware-Using-ILA.html
https://docs.fires.im/en/latest/Advanced-Usage/Debugging/TracerV.html
https://docs.fires.im/en/dev/Advanced-Usage/Debugging/DESSERT.html
https://docs.fires.im/

