
Modifying the Target Design

FireSim Intensive
Chisel Community Conference 2018

Speaker: David Biancolin

Modifying the Target Design

In this section:

• Explain how the target is modeled in FireSim

• Discuss how to add and modify each class of model

Code references apply to FireSim v.1.4.0

Relevant FireSim docs section: “Targets”

https://docs.fires.im/en/latest/Advanced-Usage/Generating-Different-Targets.html

2

https://docs.fires.im/en/latest/Advanced-Usage/Generating-Different-Targets.html

Important Submodules & Aliases
Submodules:
MIDAS: sim/midas
FIRRTL: sim/firrtl
Firechip: target-design/firechip
Rocket-Chip: target-design/firechip/rocket-chip
Chisel: target-design/firechip/rocket-chip/chisel

Aliases for this presentation:
FSCALA -> sim/src/main/scala
FCPP -> sim/src/main/cc/
MSCALA -> {in MIDAS}/src/main/scala/midas
MCPP -> {in MIDAS}/src/main/cc/

3

• Represent the target as a synchronous-dataflow graph

• FireSim stitches together a larger graph to model a datacenter

From Yesterday: Target as a Dataflow Graph

4

SW Model
To be hosted on a CPU

Transformed RTL Model
Derived from SoC RTL

To be hosted on an FPGA

Abstract RTL Model
Cannot be taped out

To be hosted on an FPGA

Expressing the Target Graph in FireSim

• Target graph is implicit, currently not encoded in one place.
• There is only one transformed-RTL model
• The CHIRRTL you passed to midas.Compiler

• In Simulation Mapping
• 2+ entry queue channels are instantiated on Decoupled IO
• 1-cycle pipe channels are used everywhere else.

• SW and Custom RTL models are bound to IO bundles using
midas.core.Endpoint
• Matches on a IO type, generates a model or endpoint

5

Parameterizing the RTL-Transformed Model

• FireSim provides four base Rocket-Chip “cakes” that form the base
RTL-transformed model
• DESIGN make variable

Two types of parameters:
1. Target: (see TargetConfigs.scala) Configure the generated RTL model
• # of Cores, L1 $ Sizes, # of memory channels
• TARGET_CONFIG make variable

2. Sim/Platform: (see SimConfigs.scala) Configure MIDAS, SW/Custom
RTL model generation
• Configs for endpoints, Type of DRAM model, enable debug features etc…
• PLATFORM_CONFIG make variable

6

Swapping out the RTL-Transformed Model

Two common approaches, based on the type of Target:

1. Project-template-based Rocket-chip targets (FireChip)
• Point at the FireChip submodule at your fork
NB: MIDAS depends on Rocket-Chip; Rocket-Chip provides Chisel submodule

2. Everything else (ex. Your custom CGRA etc..)
• Add scala sources for your target (modify sim/build.sbt)
• Define an App (Generator) that calls midas.Compiler(…)
• Add a target-specific makefrag (ex. sim/src/main/makefrag/firesim/Makefrag)
See the MIDAS examples for an simple demonstration of this.

7

On Abstract RTL & SW Models.

FireSim & MIDAS provide the following models.
Abstract-RTL :
1. DefaultIOModel ($MSCALA/widgets/PeekPokeIO.scala)

• Bound to I/O unbound by custom endpoints

2. DRAM & LLC model ($MSCALA/models/dram/MidasMemModel.scala)
• Bound to AXI4 slave interfaces

SW-models:
1. NIC
2. SerialIO
3. Block-device
4. UART
These are all FireSim provided: See $FSCALA/endpoints and $FCPP/endpoints

8

Compile-time vs Runtime Configuration

Software models and custom RTL models are configured twice:
1. Compile/Generation time
2. Runtime

On Compile-time configuration:
• RTL-generation for Custom-RTL models (FPGA resynthesis required)
• How: using different a PLATFORM_CONFIG; hacking on the Chisel sources

• CPP compilation for SW models (no FPGA resynthesis)
• How: changing model & driver CPP sources.

9

Runtime Configuration

• Pass plus args to the simulator
• SW models: does what you expect
• Custom-RTL models: driver writes to model’s configuration registers
• Ex. +blkdev_write_latency,

• How: Modify deploy/config_runtime.ini
• Change ini-exposed variables
• Specify a customruntimeconfig in deploy/config_hwdb.ini

10

Runtime Configuration – config_runtime.ini

11

HWDB entry: None -> Uses a default runtime.conf emitted at generation
time

Runtime.conf -> plusArgs you want to pass to the simulator

Runtime Configuration – config_hwdb.ini

12

Adding a Custom Model – Chisel-side

1. Expose a Record/Bundle in your Target RTL’s IO with a specific type

2. Extend midas.Endpoint to:

1. Match on the correct Chisel type

• Implement Endpoint.matchType(Data)=> Boolean

2. Generate your SW model’s endpoint, or custom RTL-model Implement

• Implement Endpoint.widget(Parameters)=> EndpointWidget

3. Add your endpoint to the EndpointMap Field in your PLATFORM_CONFIG

See:

• $FSCALA/endpoints/UARTWidget.scala

• $FSCALA/endpoints/BlockDevWidget.scala

• $FSCALA/firesim/SimConfigs.scala

13

Adding a Custom Model – Driver-side

1. Define an endpoint driver class
• Use simif::{read, write, push, pull} to interact with FPGA-hosted endpoint

2. Register the endpoint driver in firesim_top.cc

See:
• $FCPP/endpoints/uart.{cc, h}
• $FCPP/endpoints/blockdev.{cc, h}
• $FCPP/firesim/firesim_top.cc

14

DRAM Timing Models – Generation Time Conf

• Parameterized using the PLATFORM_CONFIG make variable

• See $FSCALA/firesim/SimConfigs.scala

• Abstract timing models:

• Latency-Bandwidth Pipe

• Bank Conflict

• DDR3 Timing models:

• First-Come First-Served (FCFS)

• First-Ready, First-Come First-Served (FR-FCFS)

• All timing models can be composed with a LLC model.

15

DRAM Timing Models – Runtime Conf

• DDR timing models expose >30 runtime arguments
• Many illegal settings, need to validate against generated model instance

• Ex. Setting that would overflow a timing register.
• Many invalid settings, need to validate against DDR3 part database

• Ex. A non-standard JEDEC DDR3 timing, timings are density dependent

• A default runtime-configuration is emitted at generation time
• See generated-src/f1/${TARGET_TUPLE}/runtime.conf

• To generate a custom runtime-config:
• In sim/: make conf

16

DRAM Timing Models – custom runtime.conf

17

