O FireSim

Modiftying the Target Design

FireSim Intensive
Chisel Community Conference 2018
Speaker: David Biancolin

;9 Berkeley Architecture Research

Modifying the Target Design

In this section:
* Explain how the target is modeled in FireSim
* Discuss how to add and modify each class of model

Code references apply to FireSim v.1.4.0

Relevant FireSim docs section: “Targets”
https://docs.fires.im/en/latest/Advanced-Usage/Generating-Different-Targets.html

@ Berkeley Architecture Research

https://docs.fires.im/en/latest/Advanced-Usage/Generating-Different-Targets.html

Important Submodules & Aliases

Submodules:

MIDAS: sim/midas

FIRRTL: sim/firrtl

Firechip: target-design/firechip

Rocket-Chip: target-design/firechip/rocket-chip

Chisel: target-design/firechip/rocket-chip/chisel

Aliases for this presentation:

FSCALA -> sim/src/main/scala

FCPP -> sim/src/main/cc/

MSCALA -> {in MIDAS}/src/main/scala/midas
MCPP -> {in MIDAS}/src/main/cc/

@ Berkeley Architecture Research :

From Yesterday: Target as a Dataflow Graph

* Represent the target as a synchronous-dataflow graph

/7 N\

11m
FESVR >{m{> Rocket-chip [*]m[* DPRAM Timing
SW Model — R |z Model
To be hosted on a CPU AXI4 Abstract RTL Model
< Cannot be taped out
%Q” To be hosted on an FPGA
Transformed RTL Model Block / Té t] | Register Pipe
Derived from SoC RTL Device g m | Queue (LI)
To be hosted on an FPGA Default I/O (1 Software
Model g Transformed RTL
(Reset) 'czcg O ransrorme
) Abstract RTL

* FireSim stitches together a larger graph to model a datacenter

@ Berkeley Architecture Research

Expressing the Target Graph in FireSim

* Target graph is implicit, currently not encoded in one place.

* There is only one transformed-RTL model
* The CHIRRTL you passed to midas.Compiler

* In Simulation Mapping
e 2+ entry queue channels are instantiated on Decoupled IO
* 1-cycle pipe channels are used everywhere else.

* SW and Custom RTL models are bound to 10 bundles using
midas.core.Endpoint

* Matches on a |0 type, generates a model or endpoint

@ Berkeley Architecture Research >

Parameterizing the RTL-Transformed Model

* FireSim provides four base Rocket-Chip “cakes” that form the base
RTL-transformed model

e DESIGN make variable
Two types of parameters:

1. Target: (see TargetConfigs.scala) Configure the generated RTL model
* # of Cores, L1 S Sizes, # of memory channels
* TARGET CONFIG make variable

2. Sim/Platform: (see SimConfigs.scala) Configure MIDAS, SW/Custom
RTL model generation

* Configs for endpoints, Type of DRAM model, enable debug features etc...
* PLATFORM CONFIG make variable

@ Berkeley Architecture Research

Swapping out the RTL-Transformed Model

Two common approaches, based on the type of Target:

1. Project-template-based Rocket-chip targets (FireChip)
* Point at the FireChip submodule at your fork
NB: MIDAS depends on Rocket-Chip; Rocket-Chip provides Chisel submodule

2. Everything else (ex. Your custom CGRA etc..)
» Add scala sources for your target (modify sim/build. sbt)
* Define an App (Generator) that calls midas.compiler (..
* Add a target-specific makefrag (ex. sim/src/main/makefrag/firesim/Makefrag)
See the MIDAS examples for an simple demonstration of this.

@ Berkeley Architecture Research

On Abstract RTL & SW Models.

FireSim & MIDAS provide the following models.
Abstract-RTL :

1. DefaultiOModel ($MSCALA/widgets/PeekPokeIO.scala)
* Bound to I/O unbound by custom endpoints

2. DRAM & LLC model (SMSCALA/models/dram/MidasMemModel.scala)
* Bound to AXI4 slave interfaces

SW-models:

1. NIC

2. SeriallO

3. Block-device
4. UART

These are all FireSim provided: See SFSCALA/endpoints and $SFCPP/endpoints

@ Berkeley Architecture Research

Compile-time vs Runtime Configuration

Software models and custom RTL models are configured twice:
1. Compile/Generation time
2. Runtime

On Compile-time configuration:

* RTL-generation for Custom-RTL models (FPGA resynthesis required)
* How: using different a PLATFORM CONFIG; hacking on the Chisel sources

* CPP compilation for SW models (no FPGA resynthesis)
* How: changing model & driver CPP sources.

@ Berkeley Architecture Research

Runtime Configuration

* Pass plus args to the simulator
* SW models: does what you expect
* Custom-RTL models: driver writes to model’s configuration registers
e Ex. +blkdev_write_latency,

* How: Modify deploy/config runtime.ini
* Change ini-exposed variables
* Specify a customruntimeconfig in deploy/config hwdb.ini

@ Berkeley Architecture Research 1o

Runtime Configuration — config_runtime.ini

targetconfig
no_net _config

firesim-quadcore-no-nic-ddr3-11c4mb

tracing
no

@ Berkeley Architecture Research

Runtime Configuration — config_hwdb.ini

fireboom-singlecore-nic-ddr3-11c4mb
agfi-09be8ac8940231ba3
None
None

HWDB entry: None -> Uses a default runtime.conf emitted at generation
time

+mm_backendLatency=2
+mm_dramTimings_tAL=0
+mm_dramTimings_tCAS=14
+mm_dramTimings_tCMD=1
+mm_dramTimings_tCWD=10
+mm_dramTimings_tCCD=4
+mm_dramTimings_tFAW=25

Runtime.conf -> plusArgs you want to pass to the simulator

@ Berkeley Architecture Research

Adding a Custom Model — Chisel-side

1. Expose a Record/Bundle in your Target RTL’s IO with a specific type

2. Extend midas.Endpoint to:
1. Match on the correct Chisel type

* Implement Endpoint.matchType (Data)=> Boolean
2. Generate your SW model’s endpoint, or custom RTL-model Implement
* Implement Endpoint.widget (Parameters)=> EndpointWidget

3. Add your endpoint to the EndpointMap Field in your pLaTFORM cONFIG
See:

* SFSCALA/endpoints/UARTWidget.scala

* SFSCALA/endpoints/BlockDevWidget.scala

* SFSCALA/firesim/SimConfigs.scala

@ Berkeley Architecture Research =

Adding a Custom Model — Driver-side

1. Define an endpoint driver class
* Use simif::{read, write, push, pull} to interact with FPGA-hosted endpoint

2. Register the endpoint driver in firesim_top.cc

See:

* SFCPP/endpoints/uart.{cc, h}

* SFCPP/endpoints/blockdev.{cc, h}
* SFCPP/firesim/firesim_top.cc

@ Berkeley Architecture Research 4

DRAM Timing Models — Generation Time Conf

* Parameterized using the rLatrorm_conric make variable

* See sFSCALA/firesim/SimConfigs.scala

e Abstract timing models:

e Latency-Bandwidth Pipe
* Bank Conflict

* DDR3 Timing models:
e First-Come First-Served (FCFS)
* First-Ready, First-Come First-Served (FR-FCFS)

 All timing models can be composed with a LLC model.

@ Berkeley Architecture Research =

DRAM Timing Models — Runtime Conf

* DDR timing models expose >30 runtime arguments

* Many illegal settings, need to validate against generated model instance
* Ex. Setting that would overflow a timing register.

* Many invalid settings, need to validate against DDR3 part database
* Ex. A non-standard JEDEC DDR3 timing, timings are density dependent

* A default runtime-configuration is emitted at generation time

* See generated-src/f1/S${TARGET TUPLE}/runtime.conf

* To generate a custom runtime-config:
* |n sim/: make conft

@ Berkeley Architecture Research 16

DRAM Timing Models — custom runtime.conf

lTotal FIRRIL Compile Time: Zo6l.1 ms
[] [0.000] Elaborating design...
Generating a Midas Memory Model

Max Read Requests: 16

Max Write Requests: 16

Timing Model Parameters
Timing Model Class: First-Ready FCFS MAS
LLC Parameters:
Sets: [1,4096]
Associativity: [1,8]
Block Size (B): [8,128]
MSHRs: [1,8]
Replacement Policy: Random

[] Math.scala:13 (626 calls): apply is deprecated: "Use 1log2Ceil instead"
[] class midas.widgets.MemModelIO (1 calls): Unable to automatically infe
mmutable and accessible. Either make all parameters immutable and accessible (vals)
[warn] There were 2 deprecated function(s) used. These may stop compiling in a futu
[warn] Line numbers for deprecations reported by Chisel may be inaccurate; enable s
[warn] In the sbt interactive console, enter:

[warn] set scalacOptions in ThisBuild ++= Seq("-unchecked", "-deprecation")
[warn] or, in your build.sbt, add the line:

[warn] scalacOptions := Seq("-unchecked", "-deprecation")

[] [2.016] Done elaborating.

Generating a Midas Memory Model Configuljation File
Functional Model Settings
Relax functional model(®):[]

@ Berkeley Architecture Research

