Scalable FPGA-accelerated

. o Cycle-Accurate Hardware
é FlreS|m Simulation in the Cloud

Introduction

https://fires.im
Y @firesimproject

Chisel Community Conference 2018 Intensive

Speakers: Sagar Karandikar, David Biancolin, Alon Amid

AL

Berkeley Architecture Research

[

What is this “Intensive” about?

* We're going to keep things very practical today, treat
this as a tutorial

* For more of the research background, see our
papers/previous talks

* We’re going to cram in a lot of info, but feel free to
interrupt us with questions

* We'll put up the full slide deck online anyway

Berkeley Architecture Research 3

Today’s Agenda

* Intro, what is FireSim capable of?
 (Sagar, 10 mins)

* Building/Deploying FireSim Simulations
 (Sagar, 15 mins)

* Using FireSim to simulate your own custom HW
e (David, 15 mins)

* Testing and Debugging your design in FireSim
* (Alon, 15 mins)

* Community/Contributing/Conclusion
 (David, 10 mins)

Berkeley Architecture Research
¥ g

What can FireSim do?

* Model hardware at scale, cycle-accurately:
 CPUs down to microarchitecture (automatically transformed from Chisel RTL)
* Fast networks, switches (SW models)
* Novel accelerators (also transformed from Chisel)

* Run real software:
* Real OS, networking stack (Linux)
* Real frameworks/applications (not microbenchmarks)

* Be productive/usable:
* Run on a commodity platform (Amazon EC2 F1)

* Want to encourage collaboration between systems, architecture: real HW/SW
co-design research

Berkeley Architecture Research 9

Why do we want an FPGA-based simulator?

FPGA Emulation/Prototyping Taped-out Design
SoC sees 10 cycle DRAM latency SoC sees 100 cycle DRAM latency

RTL

DRAM RTL DRAM

on FPGA
100 MHz

100ns ta ped-OUt 100ns
latency 1 G H 7 latency

%E-‘:,% Berkeley Architecture Research H
Y/

How do we fix this? FAME-1 Xform in FIRRTL w/MIDAS

“FAME-1" Transformed RTL Design

<- Resp Queue DRAM
Model

1 Mem
RTL Design o0

cycle
Req Queue -> latency

Physical
DRAM

100ns
latency

FPGA Fabric

Comparing existing HW “simulation” systems

* Taping-out excels at:
* Modeling reality: “single source of truth”
e Scalability

e Hardware-accelerated simulators excel at:

e Simulation rate
* Ability to run real workloads (as fn. of sim rate)

e Software-based simulators excel at:
e Ease-of-use
* Ease-of-rebuild (time-to-first-cycle)
 Commodity host platform
* Cost
* |Introspection

Berkeley Architecture Research "

Prior work on HW-accelerated simulators:

DIABLO

 DIABLO, ASPLOS’15 [4]:
e Simulated 3072 servers, 96 ToRs at ~2.7 MHz
* Booted Linux, ran apps like Memcached
* An example of the many projects from RAMP

* Need to hand-write abstract RTL models
e Harder than writing “tapeout-ready” RTL
* Need to validate against real HW

* Tied to an expensive custom host-
platform

* S100k+ host platform, custom built

Berkeley Architecture Research 14

Useful trends throughout the architect’s stack
Open ISA

N 4

RISC

Open, Silicon-Proven
SoC Implementations

CP

fedor

CHISEeL—

High-Productivity
Hardware Design
Language w/IR

'_j} Berkeley Architecture Research T
7

FireSim at a high-level

Server Simulations
* Or your own custom hardware
* Good fit for the FPGA

* We have tapeout-proven RTL:
automatically FAME-1 transform

fl.l6xlarge

CPU

Network simulation
* Or your own custom SW models

* Little parallelism in switch models
(e.g. a thread per port)

* Need to coordinate all of our
distributed server simulations

* So use CPUs + host network
Berkeley Architecture Research 16

i
Switch Model

Host Ethernet (EC2 Network)

Now, let’s build a datacenter-scale
FireSim simulation!

%3",- Berkeley Architecture Research

Step 1: Server SoC in RTL

o
(O
| -
Q

-
Q.

-
Q

(el
| -
Q

-
i)

@)

' o o o o o ' o

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

Resource Util.
- < of an FPGA

Sim Rate
- N/A

Step 1: Server SoC in RTL

&L
(4°)
Q

-
o

e
)

[l
Q

-

)

@)

' o — (@) — (@) — o

Other Periph.

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

Resource Util.
- < of an FPGA

Sim Rate
- N/A

Step 2: FPGA Simulation of one server blade

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

- 16 GB DDR3
Resource Util.
- <% of an FPGA
- % Mem Chans
] EPGA Sim Rate

Fabric -~150 MHz
- ~40 MHz (netw)

)

Other Periph.
Sim Endpoints

PCle to Host

i
(L)
—
(]

i
o

=
(O]

(a1
S
(]

e
)

O

< 0608 ll z)2

NIC Sim
Endpoint

[

DRAM Model

Step 2: FPGA Simulation of one server blade

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

- 16 GB DDR3
Resource Util.
- <% of an FPGA
- % Mem Chans
] EPGA Sim Rate

Fabric -~150 MHz
- ~40 MHz (netw)

]

Sim Endpoints

Other Periph.

PCle to Host

2
()
{ .
]

<
Q.

e
)

o
| -
]

<

)

@

< 0608 ll z)2

NIC Sim
Endpoint

[

DRAM Model

Step 3: FPGA Simulation of 4 server blades

Modeled System

Cost- Server - 4 Server Blades
$0.49 ver hour Blade - 16 Cores
' Simulation i

(SpOt) 64 GB DDR3
Resource Util.
-< 1 FPGA

1.65 per hour
(Sgn-deenand) Server Server - 4/4 Mem Chans
. Bla;dte_ X Bla;dte_ Sim Rate
imulation imulation _~14.3 MH3z

(netw)

Step 3: FPGA Simulation of 4 server blades

Modeled System
- 4 Server Blades

[PPON INVYHA

- 16 Cores

Simulation F P G . -64 GB DDR3

Resource Util.

FPGA

igey
9dd

° . -< 1 FPGA
4_ S I m S) Server Server (4 S I _4/4 Mem Chans
Blade Blade Sim Rate
Simulation § Simulation

-~14.3 MHz
(netw)

Step 4: Simulating a 32 node rack

Modeled System

- 32 Server Blades
- 128 Cores
Cost: - 512 GB DDR3
$2.60 per - 32 Port ToR
hour (spot) Switch

s, 01 24
S1320 per EEEE EEEN ||nkS

hour (on- Resource Util.
demand) - 8 FPGAs =
- 1x f1.16xlarge
Sim Rate
-~10.7 MHz

(netw)

Step 4: Simulating a 32 node rack

Modeled System

- 32 Server Blades
- 128 Cores
Cost: - 512 GB DDR3
$2.60 per - 32 Port ToR
hour (spot) Switch

s, 01 24
S1320 per EEEE EEEN ||nkS

hour (on- Resource Util.
demand) - 8 FPGAs =
- 1x f1.16xlarge
Sim Rate
-~10.7 MHz

(netw)

Step 4: Simulating a 32 node rack

rpGA | Frca |IEE-= 1 FPGA
(4 Sims) § (4 Sims) (4 Sims)

Host Instance CPU: ToR SW|tch Model

FPGA FPGA FPGA FPGA
(4 Sims) § (4 Sims) f§ (4 Sims) § (4 Sims)

Modeled System
- 32 Server Blades
- 128 Cores

-512 GB DDR3

- 32 Port ToR
Switch

- 200 Gb/s, 2us

links

Resource Util.

- 8 FPGAs =

- 1x f1.16xlarge
Sim Rate

-~10.7 MHz
(netw)

Step 5: Simulating a 256 node “aggregation pod”

Modeled System

- 256 Server
Blades

- 1024 Cores
-4 TB DDR3
- 8 ToRs, 1 Aggr

E— . - 200 Gb/s, 2us
Aggregation Switch links

Rack Rack Rack

— Resource Util.
1i= pE A _ 64 FPGAS _
Rack Rack Rack T - 8x f1.16xlarge
FPoa - Ix m4.16xlarge
Sim Rate

-~9 MHz (netw)

Step 5: Simulating a 256 node “aggregation pod”

Modeled System

- 256 Server
Blades

- 1024 Cores
-4 TB DDR3
- 8 ToRs, 1 Aggr

E— . - 200 Gb/s, 2us
Aggregation Switch links

— Resource Util.
1is pE A _ 64 FPGAS _
Rack Rack Rack Ty - 8x f1.16xlarge
rPoa - Ix m4.16xlarge
Sim Rate

-~9 MHz (netw)

Rack Rack Rack

Step 6: Simulating a 1024 node datacenter

Aggregation Pod

FPGA | FPGA i | FPGA
ims) 4 sims) f =z [=z
Rack Rack Rack
FPGA FPGA
i (4 sims) (4 Sims) i

Root Switch

Aggregation Pod | Aggregation Pod

Modeled System
- 1024 Servers

- 4096 Cores
-16 TB DDR3

- 32 ToRs, 4 Aggr, 1
Root

- 200 Gb/s, 2us
links

Resource Util.

- 256 FPGAs =

- 32x f1.16xlarge
- 5x m4.16xlarge
Sim Rate

-~6.6 MHz (netw)

Step 6: Simulating a 1024 node datacenter

Modeled System
- 1024 Servers

Harnesses millions of dollars of FPGAs 6 Cores
to simulate 1024 nodes cycle-exactly fR[Z’Dj i\ggr’ .
with a cycle-accurate network simulation
and global synchronization

at a cost-to-user of only 100s of dollars/hour ;‘;‘;‘A“"-
w S =

- 32x f1.16xlarge
- 5x m4.16xlarge
Sim Rate

-~6.6 MHz (netw)

Gb/s, 2us

Aggregation Pod | Aggregation Pod

Open-source: Not just datacenter simulation

* An “easy” button for fast, FPGA-

accelerated full-system simulation
* Replace network endpoints with your own Chisel
designs

* One-click: Parallel FPGA builds, Simulation
run/result collection, building target software

e Scales to a variety of use cases:

* Networked (performance depends on scale)
* Non-networked (150+ MHz), limited by your budget

e firesimcommand line program

* Like docker or vagrant, but for FPGA sims

* User doesn’t need to care about distributed magic
happening behind the scenes

>) Berkeley Architecture Research

FireSim Developer Environment

35

Open-source: Not just datacenter simulation

* Scripts can call firesimto fully
automate distributed FPGA sim

* Reproducibility: included scripts to
reproduce ISCA 2018 results

e e.g. scripts to automatically run
SPECInt2017 reference inputs in =1 day

* Many others
* 100+ pages of documentation:
https://docs.fires.im

* AWS provides grants for
researchers:
https://aws.amazon.com/grants/

%E_-‘:,% Berkeley Architecture Research
Y/

$ cd fsim/deploy/workloads
$./run-all.sh

36

https://docs.fires.im/
https://aws.amazon.com/grants/

Latest Updates

* Growing ecosystem!

« BOOM (Out-of-order RISC-V core)
now available in FireSim

* Projects publicly releasing FireSim
Images at RISC-V Summit:

e Hwacha vector accelerator
* Keystone Secure Enclave

* Berkeley IceNet (photonic DC
network) modeling

Berkeley Architecture Research

* New debugging features
* Auto-ILA: Annotate Chisel and get an
ILA automatically wired-up in FireSim

* Tracer widgets: Collect live instruction
traces from FireSim sims

* Integrating DESSERT [8]

* Assertion Synthesis now on master

* First Academic User papers:

e ISCA “18: Maas et. al. “A Hardware
Accelerator for Tracing Garbage
Collection” (Berkeley)

* MICRO “18: Zhang et. al.
“Composable Building Blocks to Open
up Processor Design” (MIT)

37

Wrapping Up

* We can prototype scalable-
systems built on arbitrary RTL at

unprecedented scale . .
+ Mix software models when desired é FIreSIm
* Simulation is automatically built V
and deployed
* Automatically deploy real Automatically .- Aggregation Pod
- B
workloads and collect results deployed, high- [[N N it
performance, -
* Open-source, runs on Amazon EC2 distributed . .
simulation Aggregation Pod | Aggregation Pod
F1, no capex

Berkeley Architecture Research e

Administrivia

* Everything we’re going to show you today is documented in
excruciating detail at http://docs.fires.im/

* Use these slides as a high-level view of what’s possible
» We'll also put the slides/videos online

>) Berkeley Architecture Research ,

http://docs.fires.im/

Today’s Agenda

Intro, what is FireSim capable of?

 (Sagar, 10 mins)

* Building/Deploying FireSim Simulations
 (Sagar, 15 mins)

* Using FireSim to simulate your own custom HW
e (David, 15 mins)

* Testing and Debugging your design in FireSim
* (Alon, 15 mins)

* Community/Contributing/Conclusion
 (David, 10 mins)

Berkeley Architecture Research 20

Learn More:

Web: https://fires.im

° ° GitHub: https://github.com/firesim
FireSim e

ISCA’18 Paper:
firesim-isca2018.pdf

QU estions? Contact: sagark@eecs.berkeley.edu

The information, data, or work presented herein was funded in part by the
Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of
Energy, under Award Number DE-AR0000849. Research was partially funded

by ADEPT Lab industrial sponsor Intel, RISE Lab sponsor Amazon Web Services,
and ADEPT Lab affiliates Google, Huawei, Siemens, SK Hynix, and Seagate. The

y 1 Berke|ey Architectu re Research views and opinions of authors expressed herein do not necessarily state or

Y reflect those of the United States Government or any agency thereof.

https://fires.im/
https://github.com/firesim
https://twitter.com/firesimproject
https://sagark.org/assets/pubs/firesim-isca2018.pdf

References

[1] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han, Rachit Agarwal, Sylvia
Ratnasamy, and Scott Shenker. 2016. Network requirements for resource disaggregation. OSDI'16

[2] Y. Lee et al., "An Agile Approach to Building RISC-V Microprocessors," in IEEE Micro, vol. 36, no. 2, pp. 8-20,
Mar.-Apr. 2016.

[3] Jacob Leverich and Christos Kozyrakis. Reconciling high server utilization and sub-millisecond quality-of-
service. EuroSys '14

[4] Zhangxi Tan, Zhenghao Qian, Xi Chen, Krste Asanovic, and David Patterson. DIABLO: A Warehouse-Scale
Computer Network Simulator using FPGAs. ASPLOS '15

[5] Tan, Z., Waterman, A., Cook, H., Bird, S., Asanovic, K., & Patterson, D. A case for FAME: FPGA architecture
model execution. ISCA "10

[6] Evaluation of RISC-V RTL Designs with FPGA Simulation. Donggyu Kim, Christopher Celio, David Biancolin,
Jonathan Bachrach and Krste Asanovic. CARRV '17.

[7] Donggyu Kim, Adam lzraelevitz, Christopher Celio, Hokeun Kim, Brian Zimmer, Yunsup Lee, Jonathan
Bachrach, and Krste Asanovic. Strober: fast and accurate sample-based energy simulation for arbitrary RTL.
ISCA ‘16

[8] Donggyu Kim, Christopher Celio, Sagar Karandikar, David Biancolin, Jonathan Bachrach, and Krste Asanovic,
“DESSERT: Debugging RTL Effectively with State Snapshotting for Error Replays across Trillions of cycles”, FPL
2018

Berkeley Architecture Research 42

