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What is this “Intensive” about?

* We're going to keep things very practical today, treat
this as a tutorial

* For more of the research background, see our
papers/previous talks

* We’re going to cram in a lot of info, but feel free to
interrupt us with questions

* We'll put up the full slide deck online anyway
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Today’s Agenda

* Intro, what is FireSim capable of?
 (Sagar, 10 mins)

* Building/Deploying FireSim Simulations
 (Sagar, 15 mins)

* Using FireSim to simulate your own custom HW
e (David, 15 mins)

* Testing and Debugging your design in FireSim
* (Alon, 15 mins)

* Community/Contributing/Conclusion
 (David, 10 mins)
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What can FireSim do?

* Model hardware at scale, cycle-accurately:
 CPUs down to microarchitecture (automatically transformed from Chisel RTL)
* Fast networks, switches (SW models)
* Novel accelerators (also transformed from Chisel)

* Run real software:
* Real OS, networking stack (Linux)
* Real frameworks/applications (not microbenchmarks)

* Be productive/usable:
* Run on a commodity platform (Amazon EC2 F1)

* Want to encourage collaboration between systems, architecture: real HW/SW
co-design research
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Why do we want an FPGA-based simulator?

FPGA Emulation/Prototyping Taped-out Design
SoC sees 10 cycle DRAM latency SoC sees 100 cycle DRAM latency

RTL

DRAM RTL DRAM

on FPGA
100 MHz

100ns ta ped-OUt 100ns
latency 1 G H 7 latency
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How do we fix this? FAME-1 Xform in FIRRTL w/MIDAS

“FAME-1" Transformed RTL Design

<- Resp Queue DRAM
Model

1 Mem
RTL Design o0

cycle
Req Queue -> latency

Physical
DRAM

100ns
latency

FPGA Fabric




Comparing existing HW “simulation” systems

* Taping-out excels at:
* Modeling reality: “single source of truth”
e Scalability

e Hardware-accelerated simulators excel at:

e Simulation rate
* Ability to run real workloads (as fn. of sim rate)

e Software-based simulators excel at:
e Ease-of-use
* Ease-of-rebuild (time-to-first-cycle)
 Commodity host platform
* Cost
* |Introspection
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Prior work on HW-accelerated simulators:

DIABLO

 DIABLO, ASPLOS’15 [4]:
e Simulated 3072 servers, 96 ToRs at ~2.7 MHz
* Booted Linux, ran apps like Memcached
* An example of the many projects from RAMP

* Need to hand-write abstract RTL models
e Harder than writing “tapeout-ready” RTL
* Need to validate against real HW

* Tied to an expensive custom host-
platform

* S100k+ host platform, custom built
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Useful trends throughout the architect’s stack
Open ISA

N 4

RISC

Open, Silicon-Proven
SoC Implementations

CP

fedor

CHISEeL—

High-Productivity
Hardware Design
Language w/IR
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FireSim at a high-level

Server Simulations
* Or your own custom hardware
* Good fit for the FPGA

* We have tapeout-proven RTL:
automatically FAME-1 transform

fl.l6xlarge

CPU

Network simulation
* Or your own custom SW models

* Little parallelism in switch models
(e.g. a thread per port)

* Need to coordinate all of our
distributed server simulations

* So use CPUs + host network
Berkeley Architecture Research 16
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Now, let’s build a datacenter-scale
FireSim simulation!
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Step 1: Server SoC in RTL
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Step 2: FPGA Simulation of one server blade
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Step 3: FPGA Simulation of 4 server blades

Modeled System

Cost- Server - 4 Server Blades
$0.49 ver hour Blade - 16 Cores
' Simulation i

(SpOt) 64 GB DDR3
Resource Util.
-< 1 FPGA

1.65 per hour
(Sgn-deenand) Server Server - 4/4 Mem Chans
. Bla;dte_ X Bla;dte_ Sim Rate
imulation imulation _~14.3 MH3z

(netw)



Step 3: FPGA Simulation of 4 server blades
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Step 4: Simulating a 32 node rack
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Step 4: Simulating a 32 node rack
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Step 5: Simulating a 256 node “aggregation pod”
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Step 6: Simulating a 1024 node datacenter

Aggregation Pod

FPGA | FPGA i | FPGA
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Step 6: Simulating a 1024 node datacenter

Modeled System
- 1024 Servers

Harnesses millions of dollars of FPGAs 6 Cores
to simulate 1024 nodes cycle-exactly fR[Z’Dj i\ggr’ .
with a cycle-accurate network simulation
and global synchronization

at a cost-to-user of only 100s of dollars/hour ;‘;‘;‘A“"-
w S =
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- 5x m4.16xlarge
Sim Rate

-~6.6 MHz (netw)
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Open-source: Not just datacenter simulation

* An “easy” button for fast, FPGA-

accelerated full-system simulation
* Replace network endpoints with your own Chisel
designs

* One-click: Parallel FPGA builds, Simulation
run/result collection, building target software

e Scales to a variety of use cases:

* Networked (performance depends on scale)
* Non-networked (150+ MHz), limited by your budget

e firesimcommand line program

* Like docker or vagrant, but for FPGA sims

* User doesn’t need to care about distributed magic
happening behind the scenes

> ) Berkeley Architecture Research

FireSim Developer Environment
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Open-source: Not just datacenter simulation

* Scripts can call firesimto fully
automate distributed FPGA sim

* Reproducibility: included scripts to
reproduce ISCA 2018 results

e e.g. scripts to automatically run
SPECInt2017 reference inputs in =1 day

* Many others
* 100+ pages of documentation:
https://docs.fires.im

* AWS provides grants for
researchers:
https://aws.amazon.com/grants/

%E_-‘:,% Berkeley Architecture Research
Y/

$ cd fsim/deploy/workloads
$ ./run-all.sh
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Latest Updates

* Growing ecosystem!

« BOOM (Out-of-order RISC-V core)
now available in FireSim

* Projects publicly releasing FireSim
Images at RISC-V Summit:

e Hwacha vector accelerator
* Keystone Secure Enclave

* Berkeley IceNet (photonic DC
network) modeling

Berkeley Architecture Research

* New debugging features
* Auto-ILA: Annotate Chisel and get an
ILA automatically wired-up in FireSim

* Tracer widgets: Collect live instruction
traces from FireSim sims

* Integrating DESSERT [8]

* Assertion Synthesis now on master

* First Academic User papers:

e ISCA “18: Maas et. al. “A Hardware
Accelerator for Tracing Garbage
Collection” (Berkeley)

* MICRO “18: Zhang et. al.
“Composable Building Blocks to Open
up Processor Design” (MIT)
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Wrapping Up

* We can prototype scalable-
systems built on arbitrary RTL at

unprecedented scale . .
+ Mix software models when desired é FIreSIm
* Simulation is automatically built V
and deployed
* Automatically deploy real Automatically .- Aggregation Pod
- B
workloads and collect results deployed, high- [ [N N it
performance, -
* Open-source, runs on Amazon EC2 distributed . .
simulation Aggregation Pod | Aggregation Pod
F1, no capex
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Administrivia

* Everything we’re going to show you today is documented in
excruciating detail at http://docs.fires.im/

* Use these slides as a high-level view of what’s possible
» We'll also put the slides/videos online

> ) Berkeley Architecture Research ,


http://docs.fires.im/

Today’s Agenda

Intro, what is FireSim capable of?

 (Sagar, 10 mins)

* Building/Deploying FireSim Simulations
 (Sagar, 15 mins)

* Using FireSim to simulate your own custom HW
e (David, 15 mins)

* Testing and Debugging your design in FireSim
* (Alon, 15 mins)

* Community/Contributing/Conclusion
 (David, 10 mins)
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Learn More:

Web: https://fires.im

° ° GitHub: https://github.com/firesim
FireSim e

ISCA’18 Paper:
firesim-isca2018.pdf

QU estions? Contact: sagark@eecs.berkeley.edu

The information, data, or work presented herein was funded in part by the
Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of
Energy, under Award Number DE-AR0000849. Research was partially funded

by ADEPT Lab industrial sponsor Intel, RISE Lab sponsor Amazon Web Services,
and ADEPT Lab affiliates Google, Huawei, Siemens, SK Hynix, and Seagate. The
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