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Agenda

• Using On-Premises FPGAs 
• Case Study: How to build/run simulations locally with your own FPGA?

• Build Farms, Run Farms, Bit Builders, Deploy Managers Deep Dive
• What are they and how do they configure the manager?

• Distributed Metasimulation
• Scale-out software simulation
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Some of our most requested questions…
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Some of our most requested questions…

“AWS EC2 F1 FPGAs are great but how do I use 
the on-premises FPGAs that I have?”



Support for On-Premises FPGAs

• Support for Xilinx Alveo U250 FPGAs
• Experimentally released in 1.14.0!

• Integrates seamlessly with existing 
FireSim collateral + tooling
• Few line change to target on-premise 

FPGA vs AWS EC2 F1 FPGAs
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Case Study: How to build and run simulations locally?



Building a U250 bitstream

• Creating a new build recipe
• Use the bit_builder_recipe field to build a Vitis U250 bitstream
• Everything else is shared from AWS EC2 F1 to Vitis! 
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firesim_rocket_singlecore_no_nic:
DESIGN: FireSim
TARGET_CONFIG: FireSimRocketConfig
PLATFORM_CONFIG: BaseVitisConfig
deploy_triplet: null
platform_config_args:

fpga_frequency: 60
build_strategy: TIMING

post_build_hook: null
metasim_customruntime_config: null
bit_builder_recipe: bit-builder-recipes/vitis.yaml

Single-core Rocket configuration 
with single DRAM channel



Building a U250 bitstream

• Running the bitstream build
• Use the externally provisioned build farm to use a local machine
• Everything else is the same!

• Run firesim buildbitstream
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build_farm:
base_recipe: build-farm-recipes/externally_provisioned.yaml
recipe_arg_overrides:
default_build_dir: <PATH TO USER BUILD DIRECTORY>
build_hosts_to_use:
- localhost

builds_to_run:
- firesim_rocket_singlecore_no_nic



Building a U250 bitstream

• Expect to see a HWDB entry in deploy/built-hwdb-entries/*
• Similar format to AWS EC2 case, only has an xclbin instead of agfi

• Support for sharing xclbins through URI
• Store on-premises bitstreams in publicly accessible location (e.g. AWS S3)
• Share bitstreams amongst multiple users
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firesim_rocket_singlecore_no_nic:
xclbin: <PATH TO XCLBIN FILE>
deploy_triplet_override: FireSim-FireSimRocketConfig-BaseVitisConfig
custom_runtime_config: null



Running a U250 bitstream

• Uses externally provisioned run farm to 
target local FPGAs
• In this case, a local machine with 4 U250s
• Use VitisInstanceDeployManager

to setup run farm hosts for U250s

• Use the HWDB entry created in the 
prior section
• Same process as before!

• launchrunfarm, infrasetup,
runworkload, terminaterunfarm

• Attach to running screen session to interact
• Have results automatically copied back
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run_farm:
base_recipe: run-farm-

recipes/externally_provisioned.yaml
recipe_arg_overrides:
default_platform: VitisInstanceDeployManager
default_simulation_dir: <PATH TO SIM DIR>
run_farm_hosts_to_use:
- localhost: four_fpga_spec

target_config:
topology: no_net_config
no_net_num_nodes: 1
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1

default_hw_config: 
firesim_rocket_singlecore_no_nic

workload:
workload_name: linux-uniform.json



Behind the Scenes: Build + Run Farms

• Manager rearchitected for 
maximum configurability
• Target different clouds/clusters
• Convenient defaults for AWS EC2 

and set of unmanaged machines 
(typical pre-setup cluster)
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Default Distributed AWS EC2 Setup



Behind the Scenes: Build + Run Farms

• Manager rearchitected for 
maximum configurability
• Target different clouds/clusters
• Convenient defaults for AWS EC2 

and set of unmanaged machines 
(typical pre-setup cluster)
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Completely Local Setup



Behind the Scenes: Build + Run Farms

• Manager rearchitected for 
maximum configurability
• Target different clouds/clusters
• Convenient defaults for AWS EC2 

and set of unmanaged machines 
(typical pre-setup cluster)
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Mixed Setup:
Local Builds + Distributed Simulations



• In config_<build/runtime>.ini
• base_recipe sets type of build/run farm
• You can modify its defaults by

• Modifying the recipe file directly
• Overriding using recipe_arg_overrides

Behind the Scenes: Build + Run Farms
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config_runtime.yaml example



• Two types of default build/run farm types
• AWS EC2 (aws_ec2.yaml)
• Default build/run farms used on AWS EC2
• Fully distributed builds and simulations
• Equivalent functionality to pre-1.14.0

• Externally Provisioned (externally_provisioned.yaml)
• Use a pre-setup cluster of machines (including running locally)
• Just needs FPGA platform (i.e. Vitis), number of FPGAs, and IP/hostname

Behind the Scenes: Build + Run Farms
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Behind the Scenes: Bit Builders + Deploy Managers

• Notice how nothing was mentioned about type of FPGA used!
• Target different FPGA platforms as well!

• AWS EC2 F1 or Vitis Alveo U250 FPGAs

• This is done by
• Bit Builders – abstract bitstream build process
• Deploy Managers - abstract setup of run farm hosts for FPGA platform

• You can see this in config_build_recipes.yaml and a specific 
run farm recipe (i.e. aws_ec2.yaml)
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Behind the Scenes: Maximum Configurability
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Custom Build 
Farm

AWS EC2 Build 
Farm

Cluster Build 
Farm

Custom Run 
Farm

AWS EC2 Run 
Farm

Cluster Run 
Farm

AWS EC2 F1 
Bitstreams

Vitis U250 
Bitstreams

• Manager rearchitected for 
maximum configurability
• Target different clouds/clusters
• Target different bitstreams
• And any combinations of them!
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“Gah! My FireSim simulation breaks, 
how do I do FireSim SW-level metasimulation again?”



20

RTL Design
Physical
DRAM

100ns
latency

<- Resp Queue

Req Queue ->

DRAM
Model

100
cycle

latency

Mem 
Channel

“FAME-1” Transformed RTL Design

Metasimulation

FPGA Fabric

Abstract 
ModelTarget-Level 

SW Simulation

Metasimulation Recap



Metasimulation Recap

• Software RTL Simulation
• Target design transformed by Golden Gate
• Host-FPGA interfaces/shell emulated using abstract models
• Uses existing FireSim models (i.e. DRAM, UART)

But how do I run it?
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• Original make API
• In $FDIR/sim

• Issues
• What are the make variables/targets I need to pass in?
• How do I run multiple tests in parallel? Bash script it myself?
• How do I run my existing FireMarshal workload with this?
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Running Metasimulations

$ make
EMUL=<verilator|vcs>
DESIGN=FireSimNoNIC
run-asm-test-debug



• Original make API
• In $FDIR/sim

• Issues
• What are the make variables/targets I need to pass in?
• How do I run multiple tests in parallel? Bash script?
• How do I run my existing FireMarshal workload with this?
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Running Metasimulations

$ make
EMUL=<verilator|vcs>
DESIGN=FireSimNoNIC
run-asm-test-debug

Better yet! Just have the FireSim
manager do everything!



Running In Metasimulation Mode

• In config_runtime.yaml use the metasimulation mapping
• enabled: FPGA simula^on → SW RTL metasimula^on
• host_simulator: Choose to run Verilator/VCS w/ and w/o waveforms
• *plusargs: Extra non-FireSim specific arguments to pass to simulator

• Has same features as FPGA simula^ons!
• Use arbitrary Run Farms
• Automa^c copying of results
• Use FireMarshal workloads
• Quickly do FPGASim ↔ MetaSim
• Same performance results
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metasimulation:
metasimulation_enabled: true
metasimulation_host_simulator: verilator
metasimulation_only_plusargs: …
metasimulation_only_vcs_plusargs: …



Example Workflow

1. Write default RTL in Chipyard
2. Debug in Chipyard w/ target-level simulation
3. Port to FireSim (change config. files, use FireMarshal workload)
4. DSE and debugging w/ single/multi-node metasimulations
5. Testing w/ single/multi-node FPGA simulations using Vitis U250s
6. Scale-out to datacenter scale with AWS EC2 F1
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Example Workflow

1. Write default RTL in Chipyard
2. Debug in Chipyard w/ target-level simulation
3. Port to FireSim (change config. files, use FireMarshal workload)
4. DSE and debugging w/ single/multi-node metasimulations
5. Testing w/ single/multi-node FPGA simulations using Vitis U250s
6. Scale-out to datacenter scale with AWS EC2 F1
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Unified workflow for agile 
research of RISC-V systems!
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Demo Time!



Drumroll…
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FireStation v1 Machine Specs

• Intel Core i7 13700K
• Liquid cooler (w/RGB)

• 32 GB DDR4 (w/RGB)
• Xilinx Alveo U250 (active)
• Motherboard spec’d for:

• 2 U250 + GPU
• OR
• 3 U250

• 1500W PSU to support multi-FPGA/GPU
• Thermaltake Core P3 Red Case
• Ubuntu 18.04

$1500 without FPGAs or GPUs
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Running ResNet50 image recognition 

using the Gemmini DNN accelerator
on a Chipyard Rocket-based SoC 

simulated with a FireSim U250 FPGA-enabled desktop
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What are we running?



Demo Lifetime
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Demo Lifetime
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Demo LifeSme
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Demo Lifetime
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Demo Lifetime

35



Demo Lifetime
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Convert to .png



Demo LifeSme
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Convert to .png

Image 
Preprocessing



Demo Lifetime
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Convert to .png

Image 
Preprocessing

Compile target
Gemmini C binary

with image



Demo Lifetime
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Compile target
Gemmini C binary

with image

Run FireSim
Rocket + Gemmini

simulation



Demo Lifetime
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Compile target
Gemmini C binary

with image

Run FireSim
Rocket + Gemmini

simulation

Reset + Flash FPGA

Copying collateral

Running simulation



Demo Lifetime
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Compile target
Gemmini C binary

with image

Run FireSim
Rocket + Gemmini

simulation

“It’s a bridge”



Demo Lifetime
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Compile target
Gemmini C binary

with image

Run FireSim
Rocket + Gemmini

simulation

“It’s a bridge”



Demo Lifetime
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“It’s a bridge”



Demo Lifetime
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“It’s a bridge”“It’s a bridge”



Demo Lifetime
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“It’s a bridge”“It’s a bridge”



Let’s Run the Demo!
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Compile target
Gemmini C binary

with imageRun FireSim
Rocket + Gemmini

simulation

Slack UI

Image 
Preprocessing

“It’s a bridge”



Try it out yourself!

Submit links to public images on the form at:
fires.im/demo-submit

!!! Reminder the photos uploaded are public !!!
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https://fires.im/demo-submit


On-premise FPGA support now available!

• High-level of automation/reproducibility enabled by FireSim on AWS 
F1 cloud now extended to local/on-prem FPGAs:
• Went from new machine with no FPGA attached to working FPGA-accelerated 

simulation in 1 hour and 40 mins

• Use existing FireSim features at-scale and locally!
• Cycle-accurate simulation
• Debugging

• Integrated logic analyzers, trace dumps, synth. assert/prints, co-simulation
• Software support

• FireMarshal workload management
• … and more!
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Summary

• Customize how/what/where you build/run things
• Local Builds → Fully Distributed AWS EC2 Builds
• Local Simulations → Fully Distributed AWS EC2 Simulation
• And everything in between

• Target both local and AWS EC2 FPGAs
• Supporting Xilinx Alveo U250s

• Distributed SW RTL metasimulations
• Debug RTL using unified infrastructure
• Use FireSim modeling + features in SW RTL simulation
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Check out https://docs.fires.im/

for more usage details

https://docs.fires.im/

