
Using On-Premises FPGAs and
Distributed Metasimulation

ASPLOS 2023 Tutorial
Speaker: Abraham Gonzalez

https://fires.im
@firesimproject

Tutorial Roadmap
Custom SoC
Configuration

RTL Generators
RISC-V
Cores

Multi-level
Caches

Custom
VerilogPeripheralsAccelerators

Software RTL Simulation

VCS Verilator

FireSim FPGA-Accelerated Simulation

Simulation Debugging Local/Meta

Automated VLSI Flow

Hammer Tech-
plugins

Tool-
plugins

RTL Build Process
FIRRTL

TransformsFIRRTL IR Verilog

FireMarshal
Bare-metal &

Linux

Custom
Workload

QEMU & Spike

Agenda

• Using On-Premises FPGAs
• Case Study: How to build/run simulations locally with your own FPGA?

• Build Farms, Run Farms, Bit Builders, Deploy Managers Deep Dive
• What are they and how do they configure the manager?

• Distributed Metasimulation
• Scale-out software simulation

3

4

Some of our most requested questions…

5

Some of our most requested questions…

“AWS EC2 F1 FPGAs are great but how do I use
the on-premises FPGAs that I have?”

Support for On-Premises FPGAs

• Support for Xilinx Alveo U250 FPGAs
• Experimentally released in 1.14.0!

• Integrates seamlessly with existing
FireSim collateral + tooling
• Few line change to target on-premise

FPGA vs AWS EC2 F1 FPGAs

6

7

Case Study: How to build and run simulations locally?

Building a U250 bitstream

• Creating a new build recipe
• Use the bit_builder_recipe field to build a Vitis U250 bitstream
• Everything else is shared from AWS EC2 F1 to Vitis!

8

firesim_rocket_singlecore_no_nic:
DESIGN: FireSim
TARGET_CONFIG: FireSimRocketConfig
PLATFORM_CONFIG: BaseVitisConfig
deploy_triplet: null
platform_config_args:

fpga_frequency: 60
build_strategy: TIMING

post_build_hook: null
metasim_customruntime_config: null
bit_builder_recipe: bit-builder-recipes/vitis.yaml

Single-core Rocket configuration
with single DRAM channel

Building a U250 bitstream

• Running the bitstream build
• Use the externally provisioned build farm to use a local machine
• Everything else is the same!

• Run firesim buildbitstream

9

build_farm:
base_recipe: build-farm-recipes/externally_provisioned.yaml
recipe_arg_overrides:
default_build_dir: <PATH TO USER BUILD DIRECTORY>
build_hosts_to_use:
- localhost

builds_to_run:
- firesim_rocket_singlecore_no_nic

Building a U250 bitstream

• Expect to see a HWDB entry in deploy/built-hwdb-entries/*
• Similar format to AWS EC2 case, only has an xclbin instead of agfi

• Support for sharing xclbins through URI
• Store on-premises bitstreams in publicly accessible location (e.g. AWS S3)
• Share bitstreams amongst multiple users

10

firesim_rocket_singlecore_no_nic:
xclbin: <PATH TO XCLBIN FILE>
deploy_triplet_override: FireSim-FireSimRocketConfig-BaseVitisConfig
custom_runtime_config: null

Running a U250 bitstream

• Uses externally provisioned run farm to
target local FPGAs
• In this case, a local machine with 4 U250s
• Use VitisInstanceDeployManager

to setup run farm hosts for U250s

• Use the HWDB entry created in the
prior section
• Same process as before!

• launchrunfarm, infrasetup,
runworkload, terminaterunfarm

• Attach to running screen session to interact
• Have results automatically copied back

11

run_farm:
base_recipe: run-farm-

recipes/externally_provisioned.yaml
recipe_arg_overrides:
default_platform: VitisInstanceDeployManager
default_simulation_dir: <PATH TO SIM DIR>
run_farm_hosts_to_use:
- localhost: four_fpga_spec

target_config:
topology: no_net_config
no_net_num_nodes: 1
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1

default_hw_config:
firesim_rocket_singlecore_no_nic

workload:
workload_name: linux-uniform.json

Behind the Scenes: Build + Run Farms

• Manager rearchitected for
maximum configurability
• Target different clouds/clusters
• Convenient defaults for AWS EC2

and set of unmanaged machines
(typical pre-setup cluster)

12

Default Distributed AWS EC2 Setup

Behind the Scenes: Build + Run Farms

• Manager rearchitected for
maximum configurability
• Target different clouds/clusters
• Convenient defaults for AWS EC2

and set of unmanaged machines
(typical pre-setup cluster)

13

Completely Local Setup

Behind the Scenes: Build + Run Farms

• Manager rearchitected for
maximum configurability
• Target different clouds/clusters
• Convenient defaults for AWS EC2

and set of unmanaged machines
(typical pre-setup cluster)

14

Mixed Setup:
Local Builds + Distributed Simulations

• In config_<build/runtime>.ini
• base_recipe sets type of build/run farm
• You can modify its defaults by

• Modifying the recipe file directly
• Overriding using recipe_arg_overrides

Behind the Scenes: Build + Run Farms

15
config_runtime.yaml example

• Two types of default build/run farm types
• AWS EC2 (aws_ec2.yaml)
• Default build/run farms used on AWS EC2
• Fully distributed builds and simulations
• Equivalent functionality to pre-1.14.0

• Externally Provisioned (externally_provisioned.yaml)
• Use a pre-setup cluster of machines (including running locally)
• Just needs FPGA platform (i.e. Vitis), number of FPGAs, and IP/hostname

Behind the Scenes: Build + Run Farms

16

Behind the Scenes: Bit Builders + Deploy Managers

• Notice how nothing was mentioned about type of FPGA used!
• Target different FPGA platforms as well!

• AWS EC2 F1 or Vitis Alveo U250 FPGAs

• This is done by
• Bit Builders – abstract bitstream build process
• Deploy Managers - abstract setup of run farm hosts for FPGA platform

• You can see this in config_build_recipes.yaml and a specific
run farm recipe (i.e. aws_ec2.yaml)

17

Behind the Scenes: Maximum Configurability

18

Custom Build
Farm

AWS EC2 Build
Farm

Cluster Build
Farm

Custom Run
Farm

AWS EC2 Run
Farm

Cluster Run
Farm

AWS EC2 F1
Bitstreams

Vitis U250
Bitstreams

• Manager rearchitected for
maximum configurability
• Target different clouds/clusters
• Target different bitstreams
• And any combinations of them!

19

“Gah! My FireSim simulation breaks,
how do I do FireSim SW-level metasimulation again?”

20

RTL Design
Physical
DRAM

100ns
latency

<- Resp Queue

Req Queue ->

DRAM
Model

100
cycle

latency

Mem
Channel

“FAME-1” Transformed RTL Design

Metasimulation

FPGA Fabric

Abstract
ModelTarget-Level

SW Simulation

Metasimulation Recap

Metasimulation Recap

• Software RTL Simulation
• Target design transformed by Golden Gate
• Host-FPGA interfaces/shell emulated using abstract models
• Uses existing FireSim models (i.e. DRAM, UART)

But how do I run it?

21

• Original make API
• In $FDIR/sim

• Issues
• What are the make variables/targets I need to pass in?
• How do I run multiple tests in parallel? Bash script it myself?
• How do I run my existing FireMarshal workload with this?

22

Running Metasimulations

$ make
EMUL=<verilator|vcs>
DESIGN=FireSimNoNIC
run-asm-test-debug

• Original make API
• In $FDIR/sim

• Issues
• What are the make variables/targets I need to pass in?
• How do I run multiple tests in parallel? Bash script?
• How do I run my existing FireMarshal workload with this?

23

Running Metasimulations

$ make
EMUL=<verilator|vcs>
DESIGN=FireSimNoNIC
run-asm-test-debug

Better yet! Just have the FireSim
manager do everything!

Running In Metasimulation Mode

• In config_runtime.yaml use the metasimulation mapping
• enabled: FPGA simula^on → SW RTL metasimula^on
• host_simulator: Choose to run Verilator/VCS w/ and w/o waveforms
• *plusargs: Extra non-FireSim specific arguments to pass to simulator

• Has same features as FPGA simula^ons!
• Use arbitrary Run Farms
• Automa^c copying of results
• Use FireMarshal workloads
• Quickly do FPGASim ↔ MetaSim
• Same performance results

24

metasimulation:
metasimulation_enabled: true
metasimulation_host_simulator: verilator
metasimulation_only_plusargs: …
metasimulation_only_vcs_plusargs: …

Example Workflow

1. Write default RTL in Chipyard
2. Debug in Chipyard w/ target-level simulation
3. Port to FireSim (change config. files, use FireMarshal workload)
4. DSE and debugging w/ single/multi-node metasimulations
5. Testing w/ single/multi-node FPGA simulations using Vitis U250s
6. Scale-out to datacenter scale with AWS EC2 F1

25

Example Workflow

1. Write default RTL in Chipyard
2. Debug in Chipyard w/ target-level simulation
3. Port to FireSim (change config. files, use FireMarshal workload)
4. DSE and debugging w/ single/multi-node metasimulations
5. Testing w/ single/multi-node FPGA simulations using Vitis U250s
6. Scale-out to datacenter scale with AWS EC2 F1

26

Unified workflow for agile
research of RISC-V systems!

27

Demo Time!

Drumroll…

28

FireStation v1 Machine Specs

• Intel Core i7 13700K
• Liquid cooler (w/RGB)

• 32 GB DDR4 (w/RGB)
• Xilinx Alveo U250 (active)
• Motherboard spec’d for:

• 2 U250 + GPU
• OR
• 3 U250

• 1500W PSU to support multi-FPGA/GPU
• Thermaltake Core P3 Red Case
• Ubuntu 18.04

$1500 without FPGAs or GPUs

29

Running ResNet50 image recognition

using the Gemmini DNN accelerator
on a Chipyard Rocket-based SoC

simulated with a FireSim U250 FPGA-enabled desktop

30

What are we running?

Demo Lifetime

31

Demo Lifetime

32

Demo LifeSme

33

Demo Lifetime

34

Demo Lifetime

35

Demo Lifetime

36

Convert to .png

Demo LifeSme

37

Convert to .png

Image
Preprocessing

Demo Lifetime

38

Convert to .png

Image
Preprocessing

Compile target
Gemmini C binary

with image

Demo Lifetime

39

Compile target
Gemmini C binary

with image

Run FireSim
Rocket + Gemmini

simulation

Demo Lifetime

40

Compile target
Gemmini C binary

with image

Run FireSim
Rocket + Gemmini

simulation

Reset + Flash FPGA

Copying collateral

Running simulation

Demo Lifetime

41

Compile target
Gemmini C binary

with image

Run FireSim
Rocket + Gemmini

simulation

“It’s a bridge”

Demo Lifetime

42

Compile target
Gemmini C binary

with image

Run FireSim
Rocket + Gemmini

simulation

“It’s a bridge”

Demo Lifetime

43

“It’s a bridge”

Demo Lifetime

44

“It’s a bridge”“It’s a bridge”

Demo Lifetime

45

“It’s a bridge”“It’s a bridge”

Let’s Run the Demo!

46

Compile target
Gemmini C binary

with imageRun FireSim
Rocket + Gemmini

simulation

Slack UI

Image
Preprocessing

“It’s a bridge”

Try it out yourself!

Submit links to public images on the form at:
fires.im/demo-submit

!!! Reminder the photos uploaded are public !!!

47

https://fires.im/demo-submit

On-premise FPGA support now available!

• High-level of automation/reproducibility enabled by FireSim on AWS
F1 cloud now extended to local/on-prem FPGAs:
• Went from new machine with no FPGA attached to working FPGA-accelerated

simulation in 1 hour and 40 mins

• Use existing FireSim features at-scale and locally!
• Cycle-accurate simulation
• Debugging

• Integrated logic analyzers, trace dumps, synth. assert/prints, co-simulation
• Software support

• FireMarshal workload management
• … and more!

48

Summary

• Customize how/what/where you build/run things
• Local Builds → Fully Distributed AWS EC2 Builds
• Local Simulations → Fully Distributed AWS EC2 Simulation
• And everything in between

• Target both local and AWS EC2 FPGAs
• Supporting Xilinx Alveo U250s

• Distributed SW RTL metasimulations
• Debug RTL using unified infrastructure
• Use FireSim modeling + features in SW RTL simulation

49

Check out https://docs.fires.im/

for more usage details

https://docs.fires.im/

