
A Brief Tour of FireSim:
The Manager & Compiler;

Building Hardware Designs

ASPLOS Tutorial 2023
Speaker: Abraham Gonzalez

https://fires.im
@firesimproject

Agenda: What Will We Cover?

1) The Compiler à Golden Gate
• Invoke it on example RTL
• Inspect its outputs

2) The Manager à firesim
• Explain how it’s configured
•Demonstrate how it’s used to build bitstreams

2

Where is FireSim in Chipyard?

With the software RTL simulators!
~/chipyard-afternoon/sims/firesim

à This has been exported as $FDIR

3

Interactive:

4

<ssh back onto your ec2 instance>

$ tmux new –s afternoon

$ cd $FDIR

$ ls

FireSim’s Directory Structure

sim/
• Golden Gate lives here
• Scala & C++ sources for additional FireSim models
• Make-based build system to invoke Golden Gate

deploy/
• Manager lives here
• FireSim workload definitions

platforms/ à FPGA platform definitions (e.g. AWS FPGA for F1, Xilinx Vitis for U250)

sw/ à target software & FireMarshal (more on this later)

5

Agenda: What Will We Cover?

1) The Compiler à “Golden Gate”
• Invoke it on example RTL
• Inspect its outputs

2) The Manager à firesim
• Explain how it’s configured
•Demonstrate how it’s used to build bitstreams

6

Interactive:

7

$ cd $FDIR/sim

$ make DESIGN=FireSim

An Analogy

• Golden Gate is like Verilator but for FPGA-accelerated simulation

Verilator generates C++ sources to simulate your design.
à Compile and run on a CPU-host

Golden Gate generates C++ & Verilog to simulate your design.
à Compile and run on a hybrid CPU & FPGA host

8

Golden Gate Compiler

9

Inputs:
• FIRRTL & annos from a Chipyard generator
• Compiler configuration

à Produces sources for a simulator that are:
• deterministic
• support co-simulation of software models
• area-optimized to fit more on the FPGA

Interacting with Golden Gate via Make

• Make invokes Golden Gate with three variables (the “Tuple”):

DESIGN :
• The top-level module à MODEL in Chipyard

TARGET_CONFIG:
• The generator’s config à CONFIG in Chipyard

PLATFORM_CONFIG:
• Compiler options passed to Golden Gate

10

Interactive:

11

$ cd $FDIR/sim/generated-src/f1

$ ls

here you’ll find output directories for all builds

$ cd <any-directory-here>

$ ls

Inspecting the Outputs

<long-name>.fir & <long-name>.anno.json

• Target’s FIRRTL & annotations

FireSim-generated.sv

• The compiled simulator

FireSim-generated.const.h

• Simulator’s memory map

12

Agenda: What Will We Cover?

1) The Compiler à Golden Gate
• Invoke it on example RTL
• Inspect its outputs

2) The Manager à firesim
• Explain how it’s configured
•Demonstrate how it’s used to build bitstreams

13

Background Terminology

14

“AGFI”: FPGA
Bitstream for F1

FPGAs

Using the firesim Manager Command Line

• Sourcing sourceme-f1-manager.sh puts firesim on your
path
• Can call firesim from anywhere on the instance
• It will always run from the directory:

$FDIR/deploy/

After a fresh clone, need to call:

firesim managerinit --platform f1

à You already did this at the start of the tutorial

15

Interactive:

16

$ cd $FDIR/deploy

$ ls

Configuring the Manager. 4 files in firesim/deploy/

17

config_build.yaml config_build_recipes.yaml config_hwdb.yaml config_runtime.yaml

Configuring a Build

18

config_build.yaml config_build_recipes.yaml

config_build.yaml

Anatomy of a Build Recipe

19

config_build_recipes.yaml

Consists of:

• A label

• The tuple from before

• Platform-specific bitstream
generation parameters

Defining a Build Job: config_build.yaml

20

Consists of:
• Build host platform configuration

• A list of recipes you’d like to batch out
to a build farm

Defining a Build Job: config_build.yaml

21

Once you’re done with builds:
• A list of recipes you’d like to share

with other users

Running builds

• Once we’ve configured what we want to build, let’s
build it

$ firesim buildbitstream

• This completely automates the process. For each
design, in-parallel:
• Launch a build instance
• Generate target RTL & invokes Golden Gate
• Ship infrastructure to build instances, run Vivado FPGA

builds in parallel
• Collect results back onto manager instance

• $FDIR/deploy/results-build/<TIMESTAMP>-
<tuple>/

• Email you the entry to put into config_hwdb.yaml
• Terminate the build instance

22

Anatomy of a HWDB Entry

• Same label as before

• The FPGA image

Hooks to change:

• Software models

• Runtime arguments

à Without FPGA recompilation

24

Summary

• Don’t fret if you didn’t catch everything, everything we showed you
today is documented in excruciating detail at https://docs.fires.im
• We learned how to:
• Build FireSim FPGA images for a set of targets

• https://docs.fires.im/en/stable/Building-a-FireSim-AFI.html

26

https://docs.fires.im/
https://docs.fires.im/en/stable/Building-a-FireSim-AFI.html

