Fast and Effortless

: : FPGA-accelerated
é I:l reS| m Hardware Simulation with

On-Prem and Cloud Flexibility

https://fires.im
Yy @firesimproject

Speaker: Sagar Karandikar

;) Berkeley Architecture Research

The architect/chip-developer’s design flow

1. High-level Simulation
2. Write RTL + Software, plug into your favorite ecosystem (e.g. Chipyard)

3. Co-design in software RTL sim (e.g. Verilator, VCS, etc.)
* Run microbenchmarks

4. Co-design in FPGA-accelerated simulation
* Boot an OS and run the complete software stack,
obtain realistic performance measurements

5. Tapeout - Chip

* Boot OS and run applications, but no more opportunity for co-design

Q Berkeley Architecture Research

The architect/chip-developer’s design flow

1. High-level Simulation
2. Write RTL + Software, plug into your favorite ecosystem (e.g. Chipyard)

3. Co-design in software RTL sim (e.g. Verilator, VCS, etc.)
* Run microbenchmarks

4. Co-design in FPGA-accelerated simulation

* Boot an OS and run the complete software stack, é I:l reS| I I I

obtain realistic performance measurements

5. Tapeout - Chip

* Boot OS and run applications, but no more opportunity for co-design

@9 Berkeley Architecture Research ’

What about FPGA prototyping?

Taped-out SoC FPGA Prototype of SoC
Rocket
Core
1
DRAM Holis DRAM
1 Rocket
100ns 100ns

[

Rocket
Core
Rocket
Core
Rocket
Core
latency : SOC RTL latency m— SOC RTL

Rocket
taped-out ki on FPGA

Core
@1 GHz @100 MHz

[y

[

~ ~ ~ ~
[= | = = = =l B
(w) -_— (w) -_— w) -— (w) -—

SoC sees 100 cycle DRAM latency SoC sees 10 cycle DRAM latency
Incorrect by a factor of 10!

_ﬂ;:;} Berkeley Architecture Research

Difficulties with FPGA Prototypes

In an FPGA prototype:
* Every FPGA clock executes one cycle of the simulated target

* Performance of FPGA-attached resources is exposed to the
simulated world, e.g. DRAM, SD Card, UART, Ethernet, etc.
This leads to three problems:

1) Incorrect performance modeling: FPGA resources probably not an
accurate representation of target system
a) E.g., DRAM performance off by 10x on previous slide

2) Simulations are non-deterministic
3) Different host FPGAs produce different simulation results

Berkeley Architecture Research 5

Want HW simulators that:

 Are as fast as silicon

 Are as detailed as silicon

* Have all the benefits of SW-based simulators
 Are low-cost

Our Thesis:

* FPGAs are the only viable basis technology
= Build FPGA-accelerated simulators with
SW-like flexibility using an open-source tool

_ﬂ;:;} Berkeley Architecture Research

How? Useful Trends Throughout the Stack

Open ISA Open, Silicon-Proven
: SoC Implementations
‘ fedora
RISC
CHISEU

High-Productivity —
Hardware Design
Language & IR

%HTL

ﬂf':i,» Berkeley Architecture Research

FPGAs in the Cloud

Amazon EC2 F1 Instances

FireSim at 35,000 feet

* Open-source, fast, automatic, deterministic FPGA-accelerated hardware
simulation for pre-silicon verification and performance validation

* Ingests:

* Your RTL design: FIRRTL (Chisel), blackbox Verilog
e Or Chipyard-generated designs with Rocket Chip, BOOM, NVDLA, PicoRV32, and more

* HW and/or SW 10 models (e.g. UART, Ethernet, DRAM, etc.)
* Workload descriptions

* Produces: Fast, cycle-exact simulation of your design + models around it

* Automatically deployed to on-prem or cloud FPGAs
e E.g., Xilinx Alveo or AWS EC2 F1

Berkeley Architecture Research 8

Three Distinguishing Features of FireSim

1) Not FPGA prototypes, rather FPGA-accelerated simulators

* Automatic transformation of RTL designs into FPGA-accelerated
simulators

* Enables new debugging, resource optimization, and profiling
capabilities
2) Flexible scaling from on-prem to cloud FPGAs

* Scale easily from one or more on-prem FPGAs to massively parallel
simulations on elastic supply of cloud FPGAs

e Standardized host platforms = easy to collaborate with other
researchers and perform artifact evaluation

* Heavy automation to hide FPGA complexity, regardless of on-prem or
cloud platform

3) Open-source (https://fires.im)
Berkeley Architecture Research .

https://fires.im/

Separating Target and Host

Target: the machine under Host: the machine executing
simulation (hosting) the simulation

Physical

FPGA DRAM
Fabric

RTL DRAM

taped-out L00ns
1 GHZ latency

100ns
latency

Closed simulation world.

2 Berkeley Architecture Research

10

Separating Target and Host

Target: the machine under Host: the machine executing
simulation (hosting) the simulation

RTL DRAM

taped-out L00ns
1 GHZ latency

Mem
Channel
CPU

Core

CPU
Core

100ns
latency

DRAM

Multiprocessor

Closed simulation world.

b Berkeley Architecture Research

11

FireSim Generates FPGA-Hosted Simulators
Core Core DRAM

VERILATOR CPU CPU
Core Core 100ns
latency
RTL DRAM Multiprocessor

taped-out § 100

1 G H Z seney Physical
O,C\‘ CPGA - DRAM
/1 @&m Fabric oors

-» } Berkeley Architecture Research

Host Decoupling in FireSim: Transforming the Target

1) Convert RTL into a latency-insensitive [1] model using FIRRTL transform
— =

FASED[2]
DRAM

RTL Design Timing
Model
(4 GB)

DDR3
RTL Design DRAM

(4 GB)

~ -
2) Generate FPGA-hosted model for DRAM [2] (think DRAMSim on an FPGA)
3) Generate queues (token channels) to connect the target models

[1] Theory of Latency Insensitive Design, Carloni et al, also see: RAMP
[2] FASED: FPGA-accelerated Simulation and Evaluation of DRAM, Biancolin et al

») Berkeley Architecture Research

13

Host Decoupling in FireSim: Mapping to the FPGA

FASED
DRAM

Timing

Model Mem
RTL Design !

100
cycle
latency

Physical
DRAM

<- Resp Queue

100ns
latency

Req Queue ->

FPGA Fabric

SoC sees realistic DRAM latency

b Berkeley Architecture Research .

Benefits of Host Decoupling on FPGAS

Simulations will now:
* Execute deterministically
* Produce identical results on different hosts (FPGAs & CPUs)

Decoupling enables support for:
1. SW co-simulation (e.g. block device, network models)
2. Simulating large targets over distributed hosts (ISCA ‘18, Top Picks ‘18)

3. Non-invasive debugging and instrumentation (FPL ‘18, ASPLOS "20,
ASPLOS 23)

4. Multi-cycle resource optimizations (ICCAD ‘19)
Berkeley Architecture Research .

What Can You Do With
FireSim?

gﬁ} Berkeley Architecture Research

Example use cases: Evaluating SoC Designs

e “Classical” Performance Measurement

e Run SPECint 2017 with full reference inputs on Rocket Chip in parallel on ~10 FPGAs within a day (e.g., in
D. Biancolin, et. al., FASED, FPGA ’'19)

* Rapid Full-System Design Space Exploration
e Can rapidly sweep parameter space of a design with FireSim automation
» Data-parallel accelerators (Hwacha) and multi-core processors
» Complex software stacks (Linux, OpenMP, GraphMat, Caffe)

Tile 1 Tile 2
Rocket RISC-V Hwach:
Master Sequencer Application Processor 0 Vector Master Sequencer
T T Accel. 0 L3 L3
v -E N Z 7 L T . A
Vector Lane 1 Vector Lane 0 - - d p: occ: Vector Lane 0 Vector Lane 1 SoC FPGA Host Machine

Vector Execution | [| | Vector Execution Floating Point Unit || | ——= Vector i Vector i Configuration Simulation

Unit (VXU) Unit (VXU) (FPU) unit Unit (VXU) Unit (VXU) Timing

Control

16 KB 16 KB | I | I Network
L1D$ L11$ Scalar Controller
EXEIIL
Rocket RISC-V (lsj;{:, s i e Block Device
Application Processor 1 fo-=- == i Controller
Me:

- w W TileLink Crossbar + UART }
,m\ Controller
(FPU)

Vector Memory Vector Memory Vector Memory Vector Memory l Functional
Unit (VMU) Unit (VMU) 16 KB 16 KB Unit (VMU) Unit (VMU) Models
T T L1D$ L11$ T T DDR Controller
+ LY 7 1 + +
. o ey — £ X 2 2 y
l Tilelink Crossbar I DRAM Model
‘ 512/1024/2048 KB L2$
| Peripherals (UART, Block Device, NIC) H TileLink Crossbar |
17

NEE
é@ Berkeley Architecture Research

Example use cases: Evaluating SoC Designs

* Security:
 BOOM Spectre replication Replicating Spectre-v1/2

* A.Gonzalez, et. al., Replicating_and Mitigating Spectre Attacks on an
Open Source RISC-V Microarchitecture, CARRV '19

* Keystone Enclave performance evaluation
* D. Lee, et. al., Keystone, EuroSys ‘20

e Accelerator evaluation

e Chisel-based accelerators:
* Machine learning (H. Genc, et. al., Gemmini, DAC 2021)

* Garbage collection (M. Maas, et. al., A Hardware Accelerator for
Tracing Garbage Collection, ISCA '18)

* Integrating Verilog-based accelerators:

* NVDLA (F. Farshchi, et. al. Intecgrating NVIDIA Deep Learnin
Accelerator (NVDLA) with RISC-V SoC on FireSim. EMC2 ’19?

* HLS-based rapid prototyping (Q. Huang, et. al., Centrifuge, ICCAD ‘19) Integrating NVIDIA Deep Learning Accelerator
e Scale-out accelerators (NVDLA) with RISC-V g

. Fgrza(?l Farshchi) 4Qijing Huang
* nanoPU NIC-CPU co-design (S. Ibanez, et. al., nanoPU, OSDI ‘21) Universiy of Kansas Univerity of Clilorg
* Protobuf Accelerator (S. Karandikar, et. al., A Hardware Accelerator -

]\‘/c\)/(Protc))col Buffers, MICRO "21. MICRO-54 Distinguished Artifact
inner.

Berkeley Architecture Research

18

Example use cases: Debugging and Profiling SoC

Designs

» Debugging and Profiling on the FPGA © Edit on GitHub

* Debugging a Chisel design at FPGA-

Debugging and Profiling on the FPGA
speeds

A common issue with FPGA-prototyping is the difficulty involved in trying to debug and profile
systems once they are running on the FPGA. FireSim addresses these issues with a variety of tools
for introspecting on designs once you have a FireSim simulation running on an FPGA. This section

* Many FireSim debugging features:
Assertion synthesis, printf synthesis, ILA DSy Sl e

2. Running FireSim Simulations . A 5
g e Capturing RISC-V Instruction Traces with TracerV
3. Building Your Own Hardware Designs

i n S e rt i O n , etc . (FireSim FPGA Images) o Building a Design with TracerV

o Enabling Tracing at Runtime

o Selecting a Trace Output Format

* e.g. FireSim Debugging Docs e e

Workloads o Interpreting the Trace Result
Targets o Caveats
Debugging in Software e Assertion Synthesis: Catching RTL Assertions on the FPGA

© Debugging and Profiling on the FPGA o Enabling Assertion Synthesis

Capturing RISC-V Instruction Traces o Runtime Behavior

CIENIEERY o Related Publications

Assertion Synthesis: Catching RTL

Assertions on the FPGA e Printf Synthesis: Capturing RTL printf Calls when Running on the FPGA
Printf Synthesis: Capturing RTL o Enabling Printf Synthesis

printf Calls when Running on the :

EPGA o Runtime Arguments

AutolLA: Simple Integrated Logic ° Related Publications

Anal ILA) Inserti 5 A 5
pelzellRllin=eruon o AutolLA: Simple Integrated Logic Analyzer (ILA) Insertion

AutoCounter: Profiling with Out-of-
Band Performance Counter o Enabling AutolLA

Collection o Annotating Signals

TracerV + Flame Graphs: Profiling o Setting a ILA Depth
Software with Out-of-Band Flame g 5
e G eten o Using the ILA at Runtime

Dromajo Co-simulation with BOOM ¢ AutoCounter: Profiling with Out-of-Band Performance Counter Collection
designs
o Chisel Interface

o Enabling AutoCounter in Golden Gate
o Rocket Chip Cover Functions
Supernode - Multiple Simulated SoCs o AutoCounter Runtime Parameters 19

Berkeley Architecture Research Per FPGA Mok oalo i

o Using TracerV Trigger with AutoCounter

Debugging a Hanging Simulator

Non-Source Dependency Management

Miscellaneous Tips

Example use cases: Debugging and Profiling SoC

Designs

AT LIVIE DY HILHTSID. wall g NI L

Assertions on the FPGA
Printf Synthesis: Capturing RTL

* Debugging a Chisel design at FPGA-

AutolLA: Simple Integrated Logic
Analyzer (ILA) Insertion

S p e e d S AutoCounter: Profiling with Out-of-

Band Performance Counter
Collection

[] 1 1 H ° TracerV + Flame Graphs: Profiling
a n y I re I l I l e u gg I n g e a u re S Software with Out-of-Band Flame
° Graph Generation
Dromajo Co-simulation with BOOM

Assertion synthesis, printf synthesis, ILA

Debugging a Hanging Simulator

I n S e r‘t I O n , etc . Non-Source Dependency Management

Supernode - Multiple Simulated SoCs
Per FPGA

* e.g. FireSim Debugging Docs

FireSim Asked Questions

(Experimental) Using On Premise
FPGAs

Overview & Philnsnnhv

& Read the Docs

Berkeley Architecture Research

o Printf Synthesis: Capturing RTL printf Calls when Running on the FPGA

o Enabling Printf Synthesis
o Runtime Arguments
o Related Publications

o AutolLA: Simple Integrated Logic Analyzer (ILA) Insertion

o Enabling AutolLA

o Annotating Signals

o Setting a ILA Depth

o Using the ILA at Runtime

o AutoCounter: Profiling with Out-of-Band Performance Counter Collection

o Chisel Interface

o Enabling AutoCounter in Golden Gate

o Rocket Chip Cover Functions

o AutoCounter Runtime Parameters

o AutoCounter CSV Output Format

o Using TracerV Trigger with AutoCounter
o AutoCounter using Synthesizable Printfs
o Reset & Timing Considerations

o TracerV + Flame Graphs: Profiling Software with Out-of-Band Flame Graph Generation

o What are Flame Graphs?

o Prerequisites

o Enabling Flame Graph generation in config_runtime.yaml

o Producing DWARF information to supply to the TracerV driver
o Modifying your workload description

o Running a simulation

o Caveats

* Dromajo Co-simulation with BOOM designs

o Building a Design with Dromajo
o Running a FireSim Simulation
o Troubleshooting Dromajo Simulations with Meta-Simulations

« Debugging a Hanging Simulator

o Case 1: Target hang.

o Case 2: Simulator hang due to FPGA-side token starvation.
o Case 3: Simulator hang due to driver-side deadlock.

o Simulator Heartbeat PlusArgs

Q@ Previous Next ©

20

Example use cases: Debugging and Profiling SoC

Designs

BOOM-v2 Assertion Results %

AAAAA

* Debugging a Chisel design at FPGA- e wl &

B ROOM = Directed tests and a randon

S p ee d S An open-source out-of-order pr¢ = VerilatorVCS/FPGA simula
resilient low-voltage operation in = VCS for post-glipar simulati| [N
. . . = Speculative 000 pipelines - —
* Many FireSim debugging features: il et vtoap i gl o
Assertion synthesis, printf synthesis, ILA L
. . Krste Asanovic, Da/(iﬂ Ee;\t;;;s%&nd Bol P
Insertion, etc. ,
’ : A RISC %S[u)clﬂ»}}ﬁ | » Cost: 2 x 50 cents / hour

=$5.12

« Total cost: $2 (compilation) + 2x $1.56 (simulation)

e e.g. FireSim Debugging Docs

* e.g. Fixing BOOM Bugs (D. Kim, et. al.,
DESSERT, FPL’18)

* Profiling a custom RISC-V SoC at

FPGA- d (') y
. e.g.SHpVS/eSWSCo-design of a networked RISC- /\ Flre Perf

V system (S. Karandikar, et. al., FirePerf,
ASPLOS 2020)

@9 Berkeley Architecture Research 21

How-to-build a datacenter-scale
FireSim simulation

[1] S. Karandikar et. al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud.” ISCA 2018
[2] S. Karandikar et. al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud.” IEEE Micro Top Picks 2018

SEEA
é@ Berkeley Architecture Research 22

Mapping a datacenter simulation

DC simulation requires:
* Model hardware at scale, cycle-accurately
* Run real software

RTL and abstract SW model co-simulation

e Server Simulations
* Good fit for the FPGA
* We have tapeout-proven RTL: FAME-1
transform w/Golden-Gate

Network simulation

* Little parallelism in switch models (e.g. a
thread per port)

* Need to coordinate all the distributed server
simulations

e So use CPUs + host network

§ Berkeley Architecture Research

fl.l6xlarge

Host Ethernet (EC2 Network)
4

Switch Model

CPU

Se rver

23

Step 1: Server SoC in RTL

o
(O
| -
Q

-
Q.

-
Q

(el
| -
Q

-
i)

@)

' o o o o o ' o

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

Resource Util.
- < of an FPGA

Sim Rate
- N/A

Step 1: Server SoC in RTL

&L
(4°)
Q

-
o

e
)

[l
Q

-

)

@)

' o — (@) — (@) — o

Other Periph.

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

Resource Util.
- < of an FPGA

Sim Rate
- N/A

Step 2: FPGA Simulation of one server blade

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

- 16 GB DDR3
Resource Util.
- <% of an FPGA
- % Mem Chans
] EPGA Sim Rate

Fabric -~150 MHz
- ~40 MHz (netw)

)

Other Periph.
Sim Endpoints

PCle to Host

i
(L)
—
(]

i
o

=
(O]

(a1
S
(]

e
)

O

< 0608 ll z)2

NIC Sim
Endpoint

[

DRAM Model

Step 2: FPGA Simulation of one server blade

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

- 16 GB DDR3
Resource Util.
- <% of an FPGA
- % Mem Chans
] EPGA Sim Rate

Fabric -~150 MHz
- ~40 MHz (netw)

]

Sim Endpoints

Other Periph.

PCle to Host

2
()
{ .
]

<
Q.

e
)

o
| -
]

<

)

@

< 0608 ll z)2

NIC Sim
Endpoint

[

DRAM Model

Step 3: FPGA Simulation of 4 server blades

Modeled System

Cost- Server - 4 Server Blades
$0.49 ver hour Blade - 16 Cores
' Simulation i

(SpOt) 64 GB DDR3
Resource Util.
-< 1 FPGA

1.65 per hour
(Sgn-deenand) Server Server - 4/4 Mem Chans
. Bla;dte_ X Bla;dte_ Sim Rate
imulation imulation _~14.3 MH3z

(netw)

Step 3: FPGA Simulation of 4 server blades

Modeled System
- 4 Server Blades

[PPON INVYHA

- 16 Cores

Simulation F P G . -64 GB DDR3

Resource Util.

FPGA

igey
9dd

° . -< 1 FPGA
4_ S I m S) Server Server (4 S I _4/4 Mem Chans
Blade Blade Sim Rate
Simulation § Simulation

-~14.3 MHz
(netw)

Step 4: Simulating a 32 node rack

Modeled System

- 32 Server Blades
- 128 Cores
Cost: - 512 GB DDR3
$2.60 per - 32 Port ToR
hour (spot) Switch

s, 01 24
S1320 per EEEE EEEN ||nkS

hour (on- Resource Util.
demand) - 8 FPGAs =
- 1x f1.16xlarge
Sim Rate
-~10.7 MHz

(netw)

Step 4: Simulating a 32 node rack

Modeled System

- 32 Server Blades
- 128 Cores
Cost: - 512 GB DDR3
$2.60 per - 32 Port ToR
hour (spot) Switch

s, 01 24
S1320 per EEEE EEEN ||nkS

hour (on- Resource Util.
demand) - 8 FPGAs =
- 1x f1.16xlarge
Sim Rate
-~10.7 MHz

(netw)

Step 4: Simulating a 32 node rack

rpGA | Frca |IEE-= 1 FPGA
(4 Sims) § (4 Sims) (4 Sims)

Host Instance CPU: ToR SW|tch Model

FPGA FPGA FPGA FPGA
(4 Sims) § (4 Sims) f§ (4 Sims) § (4 Sims)

Modeled System
- 32 Server Blades
- 128 Cores

-512 GB DDR3

- 32 Port ToR
Switch

- 200 Gb/s, 2us

links

Resource Util.

- 8 FPGAs =

- 1x f1.16xlarge
Sim Rate

-~10.7 MHz
(netw)

Step 5: Simulating a 256 node “aggregation pod”

Modeled System

- 256 Server
Blades

- 1024 Cores
-4 TB DDR3
- 8 ToRs, 1 Aggr

E— . - 200 Gb/s, 2us
Aggregation Switch links

Rack Rack Rack

— Resource Util.
1i= pE A _ 64 FPGAS _
Rack Rack Rack T - 8x f1.16xlarge
FPoa - Ix m4.16xlarge
Sim Rate

-~9 MHz (netw)

Step 5: Simulating a 256 node “aggregation pod”

Modeled System

- 256 Server
Blades

- 1024 Cores
-4 TB DDR3
- 8 ToRs, 1 Aggr

E— . - 200 Gb/s, 2us
Aggregation Switch links

— Resource Util.
1is pE A _ 64 FPGAS _
Rack Rack Rack Ty - 8x f1.16xlarge
rPoa - Ix m4.16xlarge
Sim Rate

-~9 MHz (netw)

Rack Rack Rack

Step 6: Simulating a 1024 node datacenter

Aggregation Pod

FPGA | FPGA =i | FPGA
ims) 4 sims) f =z [=z
Rack Rack Rack
FPGA FPGA
i (4 sims) (4 sims) i

Root Switch

Aggregation Pod | Aggregation Pod

Modeled System
- 1024 Servers

- 4096 Cores
-16 TB DDR3

- 32 ToRs, 4 Aggr, 1
Root

- 200 Gb/s, 2us
links

Resource Util.

- 256 FPGAs =

- 32x f1.16xlarge
- 5x m4.16xlarge
Sim Rate

-~6.6 MHz (netw)

Step 6: Simulating a 1024 node datacenter

Modeled System
- 1024 Servers

Harnesses millions of dollars of FPGAs 6 Cores
. B DDR3
to simulate 1024 nodes cycle-exactly ors, 4 A
with a cycle-accurate network simulation
and global synchronization

at a cost-to-user of only 100s of dollars/hour i ‘AJ“'-
w S =

- 32x f1.16xlarge
- 5x m4.16xlarge
Sim Rate

-~6.6 MHz (netw)

Gb/s, 2us

Aggregation Pod | Aggregation Pod

Productive Open-Source FPGA Simulation

ogithub.com/firesim/firesim, BSD Licensed

* An “easy” button for fast, FPGA-accelerated full-

system simulation
* Plugin your own RTL designs, your own HW/SW models

* One-click: Parallel FPGA builds, Simulation run/result collection,
building target software

e Scales to a variety of use cases:
* Networked (performance depends on scale)
* Non-networked (150+ MHz), limited by your budget

e firesimcommand line program
e Like docker or vagrant, but for FPGA sims

* User doesn’t need to care about distributed magic happening Y
behind the scenes

S

Berkeley Architecture Research FireSim Developer Environment 37

W

LY~

https://github.com/firesim/firesim

Productive Open-Source FPGA Simulation

* Scripts can call firesim to fully automate
distributed FPGA sim $ cd fsim/deploy/workloads

* Reproducibility: included scripts to reproduce ISCA 2018 results JEHRVA TS TF- 9 B =Y o

e e.g.scripts to automatically run SPECInt2017 with full reference
inputs in =1 day

* Many others included

» Several user papers have gone through artifact evaluation using
FireSim (nanoPU, FirePerf, Protobuf accel., MoCA, Simulator
Independent Coverage, etc.)

* 200+ pages of documentation: https://docs fires.im 17~

00000

* AWS provides grants for researchers:
https://aws.amazon.com/grants/ e e i

e Xilinx University Program provides FPGA donations

for university researchers:
https://www.xilinx.com/support/university.html

()
<y
!I 1 Y/

Berkeley Architecture Research 33

https://docs.fires.im/
https://aws.amazon.com/grants/
https://www.xilinx.com/support/university.html

Join the FireSim Community!:

Open-source users and industrial users

* More than 200 mailing list members and * Companies publicly announced using
850 unique cloners per-week FireSim
* Projects with public FireSim support * Esperanto Maxion ET
« Chipyard * Intensivate IntenCore
Rocket Chip * SiFive validation paper @ VLSI'20
BOOM * Galois and Lockheed Martin (DARPA
SSITH/FETT)

Hwacha Vector Accelerator

Keystone Secure Enclave

Gemmini

NVIDIA Deep Learning Accelerator (NVDLA)

* NVIDIA Blo%)foost:
https://devblogs.nvidia.com/nvdla/

« BOOM Spectre replication/mitigation
* Protobuf Accelerator
* Too many to list here!

Esperanto announcement at RISC-V Summit 2018

Berkeley Architecture Research 39

https://devblogs.nvidia.com/nvdla/

FireSim in DARPA FETT

DARPA SSITH: Building hardware defenses to
address common software vulnerabilities

DARPA FETT: How good are the defenses

built in SSITH?
* Multiple designs hosted for attack in FireSim [1]

* “Morpheus Il: A RISC-V Security Extension
for Protecting Vulnerable Software and

Hardware”

* Developed by UT Austin, U Mich., Agita Labs

° Hosted on FlreS|m for FETT [2] [1] K. Hopfer. Leveraging Amazon EC2 F1 Instances for Development and Red Teaming in
DARPA’s First-Ever Bug Bounty Program. AWS APN Blog. May 2021.

° Over 500 attackers tried to break Morpheus ” [2] A. Harris, et. al., Mcirpheus I: A BISC—V Security Extension for _Protecting Vu.InerabIe
Software and Hardware”. In proceedings of the 2021 IEEE International Symposium on

defenses, Working for la rge bug bounties. None Hardware Oriented Security and Trust (HOST), December 2021.
[3] T. Austin., et. al., “Morpheus II: A RISC-V Security Extension for Protecting Vulnerable

Succeeded [3] Software and Hardware”. In HotChips 33, August 2021.
@ Berkeley Architecture Research 40

Join the FireSim Community!:

Academic Users and Awards

ISCA ‘“18: Maas et. al. HW-GC Accelerator (Berkeley) « Awards: FireSim ISCA ‘18 paper:
MICRO ‘18: Zhang et. al. “Composable Building Blocks to Open up) ICI)EECI)EMMII'\?rO TOp:fl_k Hliaht
in” . esearch Highlights
Processor Design” (MIT) Nominee from ISCA 18
RTAS ‘20: Farshchi et. al. BRU (Kansas) . Awards: FireSim users:
EuroSys ‘20: Lee et. al. Keystone (Berkeley) e ISCA ‘18 Maas et. al.:
OSDI ‘21: Ibanez et. al. nanoPU (Stanford)) IEEE‘ Micro Top Pick
« MICRO ‘18 Zhang et. al.:
USENIX Security ‘21: Saileshwar et. al. MIRAGE (Georgia Tech) - IEEE Micro Top Pick
CCS “21: Ding et. al. “Hardware Support to Improve Fuzzing * MICRO 21 Gottschall et. al.:
Performance and Precision” (Georgia Tech) * MICRO-54 Best paper runner-up
« MICRO ‘21 Karandikar et. al.:
MICRO "21: Karandikar et. al. “A Hardware Accelerator for Protocol - MICRO-54 Distinguished Artifact
Buffers” (Berkeley/Google) winner

* |IEEE Micro Top Pick Honorable
Mention

DAC 21 Genc et. al.:
 DAC 2021 Best Paper winner

MICRO ‘21: Gottschall et. al. TIP (NTNU)

Over 20 additional user papers on the FireSim website:

* https://fires.im/publications/#userpapers »

Join the FireSim Community!:

Academic Users and Awards

* ISCA “18: | 18 paper:

 MICRO
Proces

. FireSim has been used* in published work
+ EuroS: from authors at over 20 academic and

+ 0SDI 2 industrial institutions
* USENIX

* CCS 2 -
Perforn *actually used, not only cited er-up

al.:
* MICRO " Artifact
Buffers” (B

» MICRO ‘21: Gottschall et. al. TIP (NTNU) Vo oiero Top Fick Honorable

* Over 20 additional user papers on the FireSim website: * DAC 21 Genc et. al.
« DAC 2021 Best Paper winner

* https://fires.im/publications/#userpapers .

On-premises FPGA support now available!

* High-level of automation/reproducibility enabled by FireSim on AWS
F1 cloud now extended to local/on-prem FPGAs:

 Went from new machine with no FPGA attached to working FPGA-accelerated
simulation in 1 hour and 40 mins

e Use existing FireSim features at-scale and locally!
e Cycle-accurate simulation
* Debugging
* Integrated logic analyzers, trace dumps, synth. assert/prints, co-simulation

» Software support
* FireMarshal workload management

e ...and more!

@9 Berkeley Architecture Research 4

Learn More:
Web: https://fires.im

é I:i reSi m Docs: https://docs.fires.im

GitHub: https://github.com/firesim/firesim

Mailing List:
https://groups.google.com/forum/#!forum/firesim

@firesimproject

Questions?

Email: sagark@eecs.berkeley.edu

The information, data, or work presented herein was funded in part by the Advanced
Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award
Number DE-AR0000849, by DARPA, Award Number HR0011-12-2-0016, and by NSF
CCRI ENS Chipyard Award #2016662. Research was also partially funded by

. SLICE/ADEPT Lab industrial sponsors and affiliates Amazon, Apple, Google, Intel,

» | Berkeley Architecture Research Qualcomm, and Western Digital, and RISE Lab sponsor Amazon Web Services. The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

https://fires.im/
https://docs.fires.im/
https://github.com/firesim/firesim
https://groups.google.com/forum/
https://twitter.com/firesimproject
mailto:sagark@eecs.berkeley.edu

