
Jerry Zhao

UC Berkeley

jzh@berkeley.edu

Chipyard Framework Overview



Use Cases

2

Custom SoC architecture

New blocks + reusing 

existing blocks

RTL Simulation running test 

binaries

FPGA-accelerated simulation 

running full workloads

FPGA prototyping for fast cool 

demos

Tape-out the SoC to get actual 

silicon results



Chipyard Organization

3



Chipyard Organization

4

SoC components and 

generators



Digital SoC Components

SoC Organization

RocketTile

Rocket

Core
PTW

L1I$ L1D$

TileXBar

L2 

Bank

L2 

Bank

Memory Bus

SystemXBar

Periphery Bus

UART GPIOs
Control Bus

BootROM

PLIC

CLINT

Debug

Front Bus

SerDes

BoomTile

Boom

Core
PTW

L1I$ L1D$

TileXBar

R
o

C
C

A
c
c
e

le
ra

to
r

MMIO 

Accelerator



Digital SoC Components

SoC Organization

RocketTile

Rocket

Core
PTW

L1I$ L1D$

TileXBar

L2 

Bank

L2 

Bank

Memory Bus

SystemXBar

Periphery Bus

UART GPIOs
Control Bus

BootROM

PLIC

CLINT

Debug

Front Bus

SerDes

BoomTile

Boom

Core
PTW

L1I$ L1D$

TileXBar

R
o

C
C

A
c
c
e

le
ra

to
r

MMIO 

Accelerator

Tiles:

• Each Tile contains a RISC-V core 

and private caches

• Several varieties of Cores 

supported
• Interface supports integrating your 

own RISC-V core implementation



Rocket and BOOM

Rocket:

• First open-source RISC-V CPU

• In-order, single-issue RV64GC core

• Efficient design point for low-power devices

SonicBOOM:

• Superscalar out-of-order RISC-V CPU

• Advanced microarchitectural features to maximize IPC

• TAGE branch prediction, OOO load-store-unit, register renaming

• High-performance design point for general-purpose systems

7



Rocket and BOOM

8

Rocket and SonicBOOM:

• Support RV64GC ISA profile

• Boots off-the-shelf RISC-V Linux distros (buildroot, Fedora, etc.)

• Fully synthesizable, tapeout-proven

• Described in Chisel

• Fully open-sourced



PULP Cores in Chipyard

9

CVA6 (Formerly Ariane):

• RV64IMAC 6-stage single-issue in-order core

• Open-source

• Implemented in SystemVerilog

• Developed at ETH Zurich as part of PULP,

• Now maintained by OpenHWGroup

Ibex (Formerly Zero-RISCY):

• RV64IMC 2-stage single-issue in-order core

• Open-source 

• Implemented in SystemVerilog

• Developed at ETH Zurich as part of PULP

• Now maintained by lowRISC



Sodor Educational Cores

10

Sodor Core Collection

• Collection of RV32IM cores for 
teaching and education

• 1-stage, 2-stage, 3-stage, 5-stage 
implementations

• Micro-coded “bus-based” 
implementation

• Used in introductory computer 
architecture courses at Berkeley

RISC-V 

Sodor Micro-coded



Digital SoC Components

SoC Organization

RocketTile

Rocket

Core
PTW

L1I$ L1D$

TileXBar

L2 

Bank

L2 

Bank

Memory Bus

SystemXBar

Periphery Bus

UART GPIOs
Control Bus

BootROM

PLIC

CLINT

Debug

Front Bus

SerDes

BoomTile

Boom

Core
PTW

L1I$ L1D$

TileXBar

R
o

C
C

A
c
c
e

le
ra

to
r

MMIO 

Accelerator

RoCC Accelerators:

• Tightly-coupled accelerator interface

• Attach custom accelerators to Rocket 

or BOOM cores



RoCC Accelerators

BOOM/Rocket

L1I$ L1D$

PTWTLBs
Custom 

Accelerator 

Implementation

L2

SystemBus

Peripherals

12

Core automatically decodes + sends 

custom instructions to accelerator

Accelerator can write back into core 

registers

Accelerator can support virtual-

addressing by sharing core PTW/TLB

Accelerator can fetch-from/write-to 

coherent L1 data cache or outer-
memory

Flexible interface supports a variety of 

accelerator designs

Included in Chipyard:

• Gemmini ML accelerator
• Hwacha vector accelerator

• SHA3 accelerator



Digital SoC Components

MMIO Accelerators

RocketTile

Rocket

Core
PTW

L1I$ L1D$

TileXBar

L2 

Bank

L2 

Bank

Memory Bus

SystemXBar

Periphery Bus

UART GPIOs
Control Bus

BootROM

PLIC

CLINT

Debug

Front Bus

SerDes

BoomTile

Boom

Core
PTW

L1I$ L1D$

TileXBar

R
o

C
C

A
c
c
e

le
ra

to
r

MMIO 

Accelerator

MMIO Accelerators:

• Controlled by MMIO-mapped registers

• Supports DMA to memory system

• Examples:

• Nvidia NVDLA accelerator
• FFT accelerator generator



Digital SoC Components

SoC Organization

RocketTile

Rocket

Core
PTW

L1I$ L1D$

TileXBar

L2 

Bank

L2 

Bank

Memory Bus

SystemXBar

Periphery Bus

UART GPIOs
Control Bus

BootROM

PLIC

CLINT

Debug

Front Bus

SerDes

BoomTile

Boom

Core
PTW

L1I$ L1D$

TileXBar

R
o

C
C

A
c
c
e

le
ra

to
r

MMIO 

Accelerator

TileLink Standard:

• TileLink is open-source chip-scale 

interconnect standard

• Cache-coherent

• Supports multi-core, accelerators, 
peripherals, DMA, etc

Interconnect IP:

• Library of TileLink RTL generators 

provided in RocketChip

• RTL generators for crossbar-based 
buses

• Width-adapters, clock-crossings, etc.

• Adapters to AXI4, APB



Digital SoC Components

SoC Organization

RocketTile

Rocket

Core
PTW

L1I$ L1D$

TileXBar

L2 

Bank

L2 

Bank

Memory Bus

SystemXBar

Periphery Bus

UART GPIOs
Control Bus

BootROM

PLIC

CLINT

Debug

Front Bus

SerDes

BoomTile

Boom

Core
PTW

L1I$ L1D$

TileXBar

R
o

C
C

A
c
c
e

le
ra

to
r

MMIO 

Accelerator

Shared memory:

• Open-source TileLink L2 developed by 

SiFive

• Directory-based coherence with 

MOESI-like protocol
• Configurable capacity/banking

• Support broadcast-based coherence in 

no-L2 systems

• Support incoherent memory systems



Digital SoC Components

SoC Organization

RocketTile

Rocket

Core
PTW

L1I$ L1D$

TileXBar

L2 

Bank

L2 

Bank

Memory Bus

SystemXBar

Periphery Bus

UART GPIOs
Control Bus

BootROM

PLIC

CLINT

Debug

Front Bus

SerDes

BoomTile

Boom

Core
PTW

L1I$ L1D$

TileXBar

R
o

C
C

A
c
c
e

le
ra

to
r

MMIO 

Accelerator

Peripherals and IO:

• Open-source RocketChip + SiFive

blocks:

• Interrupt controllers

• JTAG, Debug module, BootROM
• UART, GPIOs, SPI, I2C, PWM, etc.

• TestChipIP: useful IP for test chips

• Clock-management devices

• SerDes

• Scratchpads



Digital SoC Components

SoC Organization

RocketTile

Rocket

Core
PTW

L1I$ L1D$

TileXBar

L2 

Bank

L2 

Bank

Memory Bus

SystemXBar

Periphery Bus

UART GPIOs
Control Bus

BootROM

PLIC

CLINT

Debug

Front Bus

SerDes

BoomTile

Boom

Core
PTW

L1I$ L1D$

TileXBar

R
o

C
C

A
c
c
e

le
ra

to
r

MMIO 

Accelerator



Chisel

• Chisel – Hardware Construction Language built on Scala

• What Chisel IS NOT:
• NOT Scala-to-gates
• NOT HLS
• NOT tool-oriented language

• What Chisel IS:
• Productive language for generating hardware
• Leverage OOP/Functional programming paradigms
• Enables design of parameterized generators
• Designer-friendly: low barrier-to-entry, high reward
• Backwards-compatible: integrates with Verilog black-boxes

18

Chisel FIRRTL Verilog VLSI

Chisel VLSI



Chisel Example

// Generalized FIR filter parameterized by coefficients

class FirFilter(bitWidth: Int, coeffs: Seq[Int]) extends Module {

val io = IO(new Bundle {

val in = Input(UInt(bitWidth.W))

val out = Output(UInt(bitWidth.W))

})

val zs = Wire(Vec(coeffs.length, UInt(bitWidth.W)))

zs(0) := io.in

for (i <- 1 until coeffs.length) { 

zs(i) := RegNext(zs(i-1))

}

val products = zs zip coeffs map { 

case (z, c) => z * c.U

}

io.out := products.reduce(_ + _)

}

19

Flexible parameters:

• Enables development of highly flexible, 

parameterized HW generators

HDL, not HLS:

• Designers reason about wires, registers, 

gates, IO, etc.

• Familiar Wire, Reg, IO constructs makes 

Chisel beginner-friendly

Designer-friendly features

• Powerful OOP/functional programming 

paradigms

• Strict type-checking encourages 

“correct-by-construction” design



Chipyard Organization

20



Chipyard Organization

21

SoC configuration



Digital SoC Components

RocketTile

Rocket

Core
PTW

L1I$ L1D$

TileXBar

L2 

Bank

L2 

Bank

Memory Bus

SystemXBar

Periphery Bus

UART GPIOs
Control Bus

BootROM

PLIC

CLINT

Debug

Front Bus

SerDes

BoomTile

Boom

Core
PTW

L1I$ L1D$

TileXBar

Highly Parameterized Configurations

22

class CustomConfig extends Config(
new WithL1CacheWays(4) ++
new WithAsyncTiles ++
new WithSystemBusWidth(128) +
new WithFPGemmini ++
new With3WideBooms ++
new WithL2TLBs(512) ++
new WithL2Sets(1024) ++

new WithDefaultGemmini ++
new WithNRocketCores(1) ++
new WithNBoomCores(1) ++
new WithBootROM ++
new WithUART ++
new WithJtagDTM ++
new WithGPIOs ++
new WithInclusiveCache(512) ++

)

G
e

m
m

in
i 

A
c
c
e

le
ra

to
r



Chipyard Organization

23



Chipyard Organization

24

SW RTL Simulation:

• RTL-level simulation with 

Verilator or VCS

• Hands-on tutorial next

FPGA prototyping:
• Fast, non-deterministic 

prototypes

• Overview of flow later

Hammer VLSI flow:

• Tapeout a custom config in 
some process technology

• Overview of flow later

FireSim:

• Fast, accurate FPGA-

accelerated simulations
• Hands-on tutorial later



Chipyard Organization

25



Chipyard Organization

26

IO and Harness configuration



Multipurpose
ChipHarness

ChipTop

DigitalTop

IO
C

e
ll

IO
C

e
ll

IO
C

e
ll

IO
C

e
ll

A
n
a

lo
g

 

S
e

rd
e

s

P
L

L

FMC

Tethered FPGA

TestHarness

ChipTop

DigitalTop

D
R

A
M

S
im

.c
c

S
im

U
A

R
T.c

c

S
im

G
P

IO
s
.c

c

S
im

J
T
A

G
.c

c

S
im

S
e

ria
l.c

c

Te
s
tD

rive
r.v

FireSimHarness

ChipTop

DigitalTop

A
X

I4
B

rid
g

e

U
A

R
T

B
rid

g
e

G
P

IO
T
ie

J
T
A

G
T
ie

S
e

ria
lB

rid
g

e

C
lo

c
k
B

rid
g

e

FASED
Host

UART

Host

Serial

Clock

Driver



Multipurpose
ChipHarness

ChipTop

DigitalTop

IO
C

e
ll

IO
C

e
ll

IO
C

e
ll

IO
C

e
ll

A
n
a

lo
g

 

S
e

rd
e

s

P
L

L

FMC

Host FPGA

FireSimHarness

ChipTop

DigitalTop

A
X

I4
B

rid
g

e

U
A

R
T

B
rid

g
e

G
P

IO
T
ie

J
T
A

G
T
ie

TestHarness

ChipTop

DigitalTop

D
R

A
M

S
im

.c
c

S
im

U
A

R
T.c

c

S
im

G
P

IO
s
.c

c

S
im

J
T
A

G
.c

c

S
im

S
e

ria
l.c

c

Te
s
tD

rive
r.v

S
e

ria
lB

rid
g

e

C
lo

c
k
B

rid
g

e

FASED
Host

UART

Host

Serial

Clock

Driver

Digital System configuration

Chip IO configuration

Harness Configuration



A Complete Config

29

class CustomConfig extends Config(
new WithDefaultGemmini ++
new WithNRocketCores(1) ++
new WithNBoomCores(1) ++
new WithBootROM ++
new WithUART ++
new WithJtagDTM ++
new WithGPIOs ++
new WithInclusiveCache(512) ++

new WithIOCellModels ++

new WithDRAMSim ++
new WithSimUART ++
new WithSimJTAG ++
new WithSimSerial

)

TestHarness

ChipTop

DigitalTop

D
R

A
M

S
im

.c
c

S
im

U
A

R
T.c

c

S
im

G
P

IO
s
.c

c

S
im

J
T
A

G
.c

c

S
im

S
e

ria
l.c

c

Te
s
tD

rive
r.v

Digital 

System

Chip IO

Harness

Digital Config

IO Binders

Harness Binders



Chipyard Organization

30



Chipyard Organization

31

FIRRTL Transforms



FIRRTL – LLVM for Hardware

32

FIRRTL emits tool-friendly, synthesizable Verilog

C/C++

Rust

LLVM IR

LLVM PassManager x86 assembly

Dead code 

elimination

Statistics 

collection
Optimization

ARM assembly

Chisel

Verilog

FIRRTL IR

FIRRTL Passes Verilog for 

SW Sim
Dead 

expression 

elimination

Statistics 

collection

Netlist 

manipulation Verilog for 

FPGA Sim



Chipyard Organization

33

Configs: Describe 
parameterization of a multi-
generator SoC

Generators: Flexible, reusable 
library of open-source Chisel 
generators (and Verilog too)

IOBinders/HarnessBinders: 
Enable configuring IO strategy 
and Harness features

FIRRTL Passes: Structured 
mechanism for supporting multiple 
flows

Target flows: Different use-cases 
for different types of users



Chipyard Learning Curve

34

Exploratory-level

• Configure a custom SoC from pre-existing 
components

• Generate RTL, and simulate it in RTL level 

simulation
• Evaluate existing RISC-V designs

Evaluation-level

• Integrate or develop custom hardware IP into 
Chipyard

• Run FireSim FPGA-accelerated simulations

• Push a design through the Hammer VLSI flow
• Build your own system

Advanced-level

• Configure custom IO/clocking setups
• Develop custom FireSim extensions
• Integrate and tape-out a complete SoC



Chipyard is Education Friendly

35

Proven in many Berkeley Architecture 

courses

• Hardware for Machine Learning

• Undergraduate Computer Architecture

• Graduate Computer Architecture
• Advanced Digital ICs

• Tapeout HW design course

Advantages of common shared HW 

framework
• Reduced ramp-up time for students

• Students learn framework once, reuse it in 

later courses

• Enables more advanced course projects 

(tapeout a chip in 1 semester)



36



Chipyard is Research-Friendly

• Add new accelerators/custom instructions

• Modify OS/driver/software

• Perform design-space exploration across many parameters

• Test in software and FPGA-sim before tape-out

37



Chipyard is Community-Friendly

Documentation:

• https://chipyard.readthedocs.io/en/dev/

• 133 pages

• Most of today’s tutorial content is 
covered there

Mailing List:

• google.com/forum/#!forum/chipyard

Open-sourced:

• All code is hosted on GitHub

• Issues, feature-requests, PRs are 
welcomed

38

https://chipyard.readthedocs.io/en/dev/
https://groups.google.com/forum/


Conclusion

Chipyard: An open, extensible research 
and design platform for RISC-V SoCs

• Unified framework of parameterized 
generators

• One-stop-shop for RISC-V SoC design 
exploration

• Supports variety of flows for multiple 
use cases

• Open-sourced, community and 
research-friendly

Questions?

39

Beginner-
friendly

Multi-
purpose

Community-
friendly

Research-
friendly

Education-
friendly


